Poster originally for C+-+0Online'24 (29.02.-02.03.2024, https://cpponline.uk/), updated for ACCU'24 (17.04.-20.04.2024, https://accuconference.org/)

Towards

Scriptable C4++ Refactorings with

Coccinelle

Michele MARTONE*, Julia LAWALLT

(rezia —

*michele.martone@lrz.de, Leibniz Supercomputing Centre, Garching near Munich, Germany

Context: Problems with large scientific
HPC C/C++4 Codebases

In our experience and in our environment, the problems of large HPC
codebases are not so unlike those of non-HPC codebases:

= Keeping up to date to dependencies (e.g. libraries or parallelism APls)

Uncluttering old constructs (e.g. once new standards appear)

Making code future proof (e.g. amenable to parallelism)

Refactoring for performance (e.g. data layout change)

Ensuring code properties (e.g. thread safety or against code smells)

A difference is perhaps in longer lifespans and smaller teams. HPC de-
velopment tends to happen in bursts, e.g., when an idea is being devel-
oped and usually associated to a publication. Typically, future proofing
and correctness efforts are tackled by the original author, who is not a
computer scientist. At times, access to staff with specific expertise in
Software Engineering or HPC is granted as a service.

Tjulia.lawall@inria.fr, Inria, Paris, France

Background Work

= Joint expertises:

— Performance-oriented refactoring of large HPC codes (Martone)
— Formal methods for program rewriting (Lawall)

= Successful development of a programmable, replayable refactoring for

a 200 kLoC C codebase (see [C3PO])
= Using semantic patching technology of COCCINELLE

What this Poster is About

= A Franco-German collaboration
= |[n form of code rewriting rules and resulting diff output
= Refactorings recently enabled in COCCINELLE:

— HPC-affine introduction of mdspan (modern C++)
— A sample rule to replace loops with STL algorithms
— Another sample rule to enforce a programming guideline

Coccinelle
About:
= Design started in 2004 (open source in 2008)

= Targeted “collateral evolutions” (recurring changes motivated by
changes in API interfaces), in LINUX device driver code (C)

= Contributed to around 9000 commits in the LINUX kernel

= Available in various LINUX distros

Distinguishing features:

= Self-contained project

= Unique diff-like (+ .. /- ..) patch specification language
What novel uses do we foresee:

= Large-scale refactorings

» Data-layout changes

» Advanced expression manipulations

= Modern C/C++ standards and GPU-specific language extensions

Managing the Unfeasible

Our collaboration (see [C3PQO]) was initiated from the need to obtain
a programmable code refactoring that not only could be performed in
little time (a matter of seconds), but could also be maintained by the
code owners, who are astrophysicists, not C+-+ or parsing experts.

Manipulate Expressions, Globally

In [C3PO] we had to change all expressions involving a few dozen array of
structures accesses into corresponding structure of arrays accesses. T his
change impacted nearly the entire code (tens of thousands of change
sites), and yielded an estimated 2 to 5x speedup on representative runs.
We deem global expression manipulation to be the most important
application of our approach.

We hope that the general C4+4 community can find uses of our other-
wise HPC-oriented collaboration.

Low-Cost Performance Experiments

Rules can be instructed to act on selected quantities only, thus en-
abling refactorings that are partial. This opens the door to low-effort
performance experiments, including also #pragmas, loops, and function
manipulations like in the following subsections.

Modern C++4 Transformation Example

Introduction of C++23's multi-index transformations is now possible
(e.g. for std: :mdspan, see [MDSPAN]). The following semantic patch
with two rules:

1 #spatch --c++=23
»Q@tomultiindexO

; symbol a;
+expression X,V,Z;
5 @QQ

s— alx][y][z]

'+ alx, y, z]

8

0 Q0

0 symbol b;
11 QQ

o= bl...]
3+ b[0]

leads to the following code patch (context deliberately expanded):
1 @@ -1,8 +1,8 QG

No Raw Loops Example

Coccinelle can match several constructs, comprehensive of control flow.
The following example replaces a loop on elements with the use of an
STL algorithm, which is good practice [NRL].

1 #spatch --c++=17

@@ @O

3 #include <jostream>

++ #include <algorithm>

s+ #include <functional>

6

7 Q0

stype T,;

s constant k;

nwidentifier elem,result,arrid;

11 @0

2= bool result = false;

13 o o o

sw— for (T &elem arrid)

s— 1if (\(elem == k \| == elem \))
16 — {

17 —

18 — result = true;

19 — break;

20 = +

o1+ const bool result =
2 + (find (begin(arrid) ,end(arrid) ,k) !=
23 + end (arrid)) ;

1 @@ -1,20 +1,15 @@

» #include <vector>

; #include <iostream>
++#include <algorithm>
s+#include <functional?>
s int main ()

7 A

8 using namespace std;

g vector v = {1,2,3};

0v— Dbool has zero = false;

11
12 V[2] = O;

13

Enforcing Coding Guidelines Example

Coding guidelines can be project-specific or idiomatic. Here we identify
overly heavy parameters being passed by value, relating to guidelines

F16 and F17 of Stroustrup and Sutter [F16F17].

1 #spatch —--c++

2 0r10

stype T,
;identifier f;

s parameter list pl;
6 QQ

7

g T f(pl) { c .. }

9

10 0r20

1 typedef A, B;

»type heavy type = {A, B};
stype rl1l.T;

uidentifier rl1.f;

s symbol 1;

16 @0

17

s+// Note: heavy copy!

w T £ (
20 ..., heavy type 1,
21) { o o o }

100 -1,13 +1,16 @@

> #include <array>

; struct A { std::array<int,999> a; }; // heavy
. struct B { std::array<int,999> a; }; // heavy
s struct C { std::array<int, 16> a; }; // light
s void if1(int i) {}

: void if2(int &arg) {}

s void if3(const int &arg) {}

o+// Note: heavy copy!

0 voild afl(A i) {}

n+// Note: heavy copy!

2 voild bfl(B i) {}

:+// Note: heavy copy!

. void bf2(const B i) {}

5 void bf3(const B & i) {}

e w— for (int & a : v) s void cfi1(Cc i) {7}
N 15 — if (0 == a) 7 int main() { }
. int al1]1[1][1]; "} ! | .
: int b[11[11[1]; 17: cout << "doing things\n"; Key Points
6 int 1=0, j=0,k=0; 18
= alil[j][k]++; 19 = has_zero = true; = Best if used on codebases with code conventions in place
s— blil[j][k]++; > SN S = Transformations preserve most spacing and comments
o+ ali, j, kl++; “B] « Specificit lity is at th 's discreti
o+ L0037 k)4, »+ const bool has zero = pecificity vs generality is at the user’s discretion
" 3 + (find(begin(v), end(v), 0) != end(v)); = This is preliminary work
4 cout << has zero << endl; - :
Notice that lines 5—6 of the semantic patch (rule @tomultiindex@) ; } - (++ codes are very diverse
modify expressions of arbitrarily complicated statements. = We're curious to hear about your refactoring patterns
Current Work Acknowledgements References

We are expanding COCCINELLE's C++ support:
= constructors, destructors

» template declarations and instantiation

namespaces, misc keywords

lambda functions

variadic operators

Unsupported syntax in source code leads to skipping transformations.
Once we have enough syntax covered, we will develop use cases.

) michelemartone

= This work was partially funded by SiVeGCS

» Work visits in this collaboration have been supported by the
BayFrance'23 scheme (https://www.bayern-france.org/), fi-

nanced by the Bavarian Ministry of State for Education, Culture,
Science and Art (StMBW) and the French Ministery of Europe and

Foreign Affairs (MEAE)

Gauss Centre for Supercomputing

= [C3PO] M. Martone, J. Lawall; “Refactoring for Performance with Semantic
Patching: Case Study with Recipes”; Proceedings of the “Compiler-assisted Cor-
rectness Checking and Performance Optimization for HPC" Workshop at ISC'21
(preprint: https://hal.inria.fr/hal-03266521; doi: https://link.

springer.com/chapter/10.1007/978-3-030-90539-2_15)

= [NRL] Sean Parent. GoinglNative 2013 C++ Seasoning at https://www.
youtube . com/watch?v=W2tW0dzgXHA

= [F16F17] Bjarne Stroustrup and Herb Sutter. F.16: For “in” parameters, pass
cheaply-copied types by value and others by reference to const and F.17: For “in-
out” parameters, pass by reference to non-const at https://isocpp.github.
io/CppCoreGuidelines/CppCoreGuidelines

= [MDSPAN]| VV.AA. https://www.open-std.org/jtcl/sc22/wg21/docs/
papers/2022/p0009r18.html

% https://coccinelle.gitlabpages.inria.fr/website/

https://michelemartone.github.io
https://www.bayern-france.org/
https://hal.inria.fr/hal-03266521
https://link.springer.com/chapter/10.1007/978-3-030-90539-2_15
https://link.springer.com/chapter/10.1007/978-3-030-90539-2_15
https://www.youtube.com/watch?v=W2tWOdzgXHA
https://www.youtube.com/watch?v=W2tWOdzgXHA
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html
https://github.com/michelemartone
https://coccinelle.gitlabpages.inria.fr/website/
https://cpponline.uk/
https://accuconference.org/
https://cpponline.uk/
https://accuconference.org/

