
Towards
Scriptable C++ Refactorings with

Coccinelle
Michele MARTONE⋆, Julia LAWALL†

⋆michele.martone@lrz.de, Leibniz Supercomputing Centre, Garching near Munich, Germany
†julia.lawall@inria.fr, Inria, Paris, France

Context: Problems with large scientific
HPC C/C++ Codebases

In our experience and in our environment, the problems of large HPC
codebases are not so unlike those of non-HPC codebases:
• Keeping up to date to dependencies (e.g. libraries or parallelism APIs)

• Uncluttering old constructs (e.g. once new standards appear)

• Making code future proof (e.g. amenable to parallelism)

• Refactoring for performance (e.g. data layout change)

• Ensuring code properties (e.g. thread safety or against code smells)
A difference is perhaps in longer lifespans and smaller teams. HPC de-
velopment tends to happen in bursts, e.g., when an idea is being devel-
oped and usually associated to a publication. Typically, future proofing
and correctness efforts are tackled by the original author, who is not a
computer scientist. At times, access to staff with specific expertise in
Software Engineering or HPC is granted as a service.

Background Work
• Joint expertises:

– Performance-oriented refactoring of large HPC codes (Martone)
– Formal methods for program rewriting (Lawall)

• Successful development of a programmable, replayable refactoring for
a 200 kLoC C codebase (see [C3PO])

• Using semantic patching technology of Coccinelle

What this Poster is About
• A Franco-German collaboration
• In form of code rewriting rules and resulting diff output
• Refactorings recently enabled in Coccinelle:

– HPC-affine introduction of mdspan (modern C++)
– A sample rule to replace loops with STL algorithms
– Another sample rule to enforce a programming guideline

Coccinelle
About:
• Design started in 2004 (open source in 2008)
• Targeted ”collateral evolutions” (recurring changes motivated by

changes in API interfaces), in Linux device driver code (C)
• Contributed to around 9000 commits in the Linux kernel
• Available in various Linux distros
Distinguishing features:
• Self-contained project
• Unique diff -like (+ ../- ..) patch specification language
What novel uses do we foresee:
• Large-scale refactorings
• Data-layout changes
• Advanced expression manipulations
• Modern C/C++ standards and GPU-specific language extensions

Managing the Unfeasible
Our collaboration (see [C3PO]) was initiated from the need to obtain
a programmable code refactoring that not only could be performed in
little time (a matter of seconds), but could also be maintained by the
code owners, who are astrophysicists, not C++ or parsing experts.
Manipulate Expressions, Globally
In [C3PO] we had to change all expressions involving a few dozen array of
structures accesses into corresponding structure of arrays accesses. This
change impacted nearly the entire code (tens of thousands of change
sites), and yielded an estimated 2 to 5× speedup on representative runs.
We deem global expression manipulation to be the most important
application of our approach.
We hope that the general C++ community can find uses of our other-
wise HPC-oriented collaboration.
Low-Cost Performance Experiments
Rules can be instructed to act on selected quantities only, thus en-
abling refactorings that are partial. This opens the door to low-effort
performance experiments, including also #pragmas, loops, and function
manipulations like in the following subsections.
Modern C++ Transformation Example
Introduction of C++23’s multi-index transformations is now possible
(e.g. for std::mdspan, see [MDSPAN]). The following semantic patch
with two rules:

1 #spatch --c++=23
2 @tomultiindex@
3 symbol a;
4 expression x,y,z;
5 @@
6 - a[x][y][z]
7 + a[x, y, z]
8

9 @@
10 symbol b;
11 @@
12 - b[...]
13 + b[0]

leads to the following code patch (context deliberately expanded):
1 @@ -1,8 +1,8 @@
2 int main()
3 {
4 int a[1][1][1];
5 int b[1][1][1];
6 int i=0,j=0,k=0;
7 - a[i][j][k]++;
8 - b[i][j][k]++;
9 + a[i, j, k]++;

10 + b[0][j][k]++;
11 }

Notice that lines 5–6 of the semantic patch (rule @tomultiindex@)
modify expressions of arbitrarily complicated statements.

No Raw Loops Example
Coccinelle can match several constructs, comprehensive of control flow.
The following example replaces a loop on elements with the use of an
STL algorithm, which is good practice [NRL].

1 #spatch --c++=17
2 @@ @@
3 #include <iostream >
4 + #include <algorithm >
5 + #include <functional >
6

7 @@
8 type T;
9 constant k;

10 identifier elem ,result ,arrid;
11 @@
12 - bool result = false;
13 ...
14 - for (T &elem : arrid)
15 - if (\(elem == k \| k == elem \))
16 - {
17 - ...
18 - result = true;
19 - break;
20 - }
21 + const bool result =
22 + (find(begin(arrid),end(arrid),k) !=
23 + end(arrid));

1 @@ -1,20 +1,15 @@
2 #include <vector >
3 #include <iostream >
4 +#include <algorithm >
5 +#include <functional >
6 int main()
7 {
8 using namespace std;
9 vector v = {1,2,3};

10 - bool has_zero = false;
11

12 v[2] = 0;
13

14 - for (int & a : v)
15 - if (0 == a)
16 - {
17 - cout << "doing things\n";
18 -
19 - has_zero = true;
20 - break;
21 - }
22 + const bool has_zero =
23 + (find(begin(v), end(v), 0) != end(v));
24 cout << has_zero << endl;
25 }

Enforcing Coding Guidelines Example
Coding guidelines can be project-specific or idiomatic. Here we identify
overly heavy parameters being passed by value, relating to guidelines
F16 and F17 of Stroustrup and Sutter [F16F17].

1 #spatch --c++
2 @r1@
3 type T;
4 identifier f;
5 parameter list pl;
6 @@
7

8 T f(pl) { ... }
9

10 @r2@
11 typedef A, B;
12 type heavy_type = {A, B};
13 type r1.T;
14 identifier r1.f;
15 symbol i;
16 @@
17

18 +// Note: heavy copy!
19 T f (
20 ..., heavy_type i, ...
21) { ... }

1 @@ -1,13 +1,16 @@
2 #include <array >
3 struct A { std::array <int ,999> a; }; // heavy
4 struct B { std::array <int ,999> a; }; // heavy
5 struct C { std::array <int , 16> a; }; // light
6 void if1(int i) {}
7 void if2(int &arg) {}
8 void if3(const int &arg) {}
9 +// Note: heavy copy!

10 void af1(A i) {}
11 +// Note: heavy copy!
12 void bf1(B i) {}
13 +// Note: heavy copy!
14 void bf2(const B i) {}
15 void bf3(const B & i) {}
16 void cf1(C i) {}
17 int main() { }

Key Points
• Best if used on codebases with code conventions in place
• Transformations preserve most spacing and comments
• Specificity vs generality is at the user’s discretion
• This is preliminary work
• C++ codes are very diverse
• We’re curious to hear about your refactoring patterns

Current Work
We are expanding Coccinelle’s C++ support:
• constructors, destructors
• template declarations and instantiation
• namespaces, misc keywords
• lambda functions
• variadic operators
Unsupported syntax in source code leads to skipping transformations.
Once we have enough syntax covered, we will develop use cases.

Acknowledgements
• This work was partially funded by SiVeGCS
• Work visits in this collaboration have been supported by the

BayFrance’23 scheme (https://www.bayern-france.org/), fi-
nanced by the Bavarian Ministry of State for Education, Culture,
Science and Art (StMBW) and the French Ministery of Europe and
Foreign Affairs (MEAE)

References
• [C3PO] M. Martone, J. Lawall; “Refactoring for Performance with Semantic

Patching: Case Study with Recipes”; Proceedings of the “Compiler-assisted Cor-
rectness Checking and Performance Optimization for HPC” Workshop at ISC’21
(preprint: https://hal.inria.fr/hal-03266521; doi: https://link.
springer.com/chapter/10.1007/978-3-030-90539-2_15)

• [NRL] Sean Parent. GoingNative 2013 C++ Seasoning at https://www.
youtube.com/watch?v=W2tWOdzgXHA

• [F16F17] Bjarne Stroustrup and Herb Sutter. F.16: For “in” parameters, pass
cheaply-copied types by value and others by reference to const and F.17: For “in-
out” parameters, pass by reference to non-const at https://isocpp.github.
io/CppCoreGuidelines/CppCoreGuidelines

• [MDSPAN] VV.AA. https://www.open-std.org/jtc1/sc22/wg21/docs/
papers/2022/p0009r18.html

 michelemartone https://coccinelle.gitlabpages.inria.fr/website/

Poster originally for C++Online’24 (29.02.–02.03.2024, https://cpponline.uk/), updated for ACCU’24 (17.04.–20.04.2024, https://accuconference.org/)

Poster originally for C++Online’24 (29.02.–02.03.2024, https://cpponline.uk/), updated for ACCU’24 (17.04.–20.04.2024, https://accuconference.org/)

https://michelemartone.github.io
https://www.bayern-france.org/
https://hal.inria.fr/hal-03266521
https://link.springer.com/chapter/10.1007/978-3-030-90539-2_15
https://link.springer.com/chapter/10.1007/978-3-030-90539-2_15
https://www.youtube.com/watch?v=W2tWOdzgXHA
https://www.youtube.com/watch?v=W2tWOdzgXHA
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://isocpp.github.io/CppCoreGuidelines/CppCoreGuidelines
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html
https://www.open-std.org/jtc1/sc22/wg21/docs/papers/2022/p0009r18.html
https://github.com/michelemartone
https://coccinelle.gitlabpages.inria.fr/website/
https://cpponline.uk/
https://accuconference.org/
https://cpponline.uk/
https://accuconference.org/

