
Università degli Studi di Roma “Tor Vergata”
Facoltà di Ingegneria

Dottorato di Ricerca in
Informatica ed Ingegneria dell’Automazione

Ciclo XXIII

A Quad-Tree Based Sparse BLAS
Implementation for Shared Memory

Parallel Computers

Michele Martone

Tutor: Prof. Salvatore Tucci
Co-relatori: Prof. Salvatore Filippone, Prof. Marcin Paprzycki
Coordinatore: Prof. Daniel P. Bovet

“Ladies and gentleman, this is your captain speaking. I have some good news
and I have some bad news. The good news is, that we have a very strong tail
wind, and we are doing one thousand four hundred miles per hour over land.
The bad news is, that all of our navigation instruments are out, and we don’t
know where we are, and we don’t know where we are going.”

Joseph Weizenbaum

“Rebel at Work”, a documentary film about Joseph Weizenbaum, by Peter Haas
and Silvia Holzinger, 2007. Words spoken between 1:19:54 and 1:20:45.

i

Contents

Contents . iii
List of Figures . vii
List of Tables . xi
Acknowledgements . xii
Introduction . 1
Contributions . 3
Thesis Outline . 6

1 Representation of Sparse Matrices 9
1.1 Coordinate Representations . 11

1.1.1 SpMV for COO/COR/COC 14
1.1.2 SpMV for COO/COR/COC, Symmetric 18
1.1.3 SpSV for COR . 19

1.2 Compressed Sparse Stripes . 21
1.2.1 SpMV for CSR/CSC . 22
1.2.2 SpMV for CSR/CSC, Symmetric, and Variants 24
1.2.3 SpSV for CSR/CSC . 27
1.2.4 Two Variations: Zig-Zag CSR and BCSR 30

1.3 Overview of Other Operations . 32
1.4 Memory Access Patterns for Basic Sparse Matrix Operations . . 35
1.5 More Literature and Related Topics 36

1.5.1 Overview of Other Formats 36
1.5.2 Considerations and Literature Pointers 39

2 Hierarchical Representations of Sparse Matrices 41
2.1 CB : Cache Blocking . 43
2.2 CSB : Compressed Sparse Blocks 44
2.3 RCSR: A Recursive Layout . 47

2.3.1 SpMV for a Recursive Subdivision Layout 48
2.3.2 SpSV for a Recursive Subdivision Layout 51
2.3.3 Sorting for Recursive Partitioning 51
2.3.4 Recursive Subdivision . 54
2.3.5 Random Access Operations 55

2.4 First Experiments with RCSR . 56
2.4.1 Conclusions from the First RCSR/RCSC Experiment . . 61

iii

2.5 More Literature and Related Topics 62

3 Shared Memory Parallel Algorithms for Recursively Quad-Partitioned
Blocks 65

3.1 Parallel SpMV . 66

3.2 Parallel SpSV . 69

3.3 Experimental Results for SpMV and SpSV 71

3.4 Conclusions . 74

4 Tuning RCSR: Recursive Sparse Blocks 81

4.1 Reducing Index Usage in RCSR with Short Indices 81

4.1.1 Recursion Stop Criteria, Revisited 81

4.1.2 Support for 16 bit Indices 83

4.2 Experimental Evaluation of RCSR with Compressed Indices . . . 84

4.2.1 Unsymmetric Matrices . 84

4.2.2 Symmetric Matrices . 91

4.2.3 Experimental Comparison with CSB 97

4.2.4 Conclusions From the Introduction of Short Indices . . . 97

4.3 Heterogeneous (COO/CSR) Leaves:RSB 98

4.3.1 Recursive CSR and Index Overhead 98

4.3.2 Recursive Storage Format with CSR and COO Leaves . . 99

4.4 Experimental Evaluation of RSB 100

4.4.1 Unsymmetric Matrices . 100

4.4.2 Symmetric Matrices . 109

4.4.3 Comparative Analysis . 113

4.4.4 Conclusions From the Introduction of COO Leaves 115

4.5 Closing Remarks . 116

5 Building RSB Matrices 117

5.1 Literature Overview . 117

5.2 Some Properties of the Quad Trees Used in RSB Matrices 118

5.3 Overview of COO to RSB Conversion 119

5.4 Assembling RSB from Sorted COO 121

5.4.1 Experimental Results . 130

5.5 Conclusions from the Serial-Parallel RSB Constructor Experiments137

5.6 Enhancing Build Parallelism . 140

6 Conclusions and Future Work 145
6.1 Conclusions . 145
6.2 Minor Enhancements to RSB . 148
6.3 Major Enhancements to RSB . 151

A Appendix: experimental setup 155
A.1 Setup for §2.4 Experiments . 155
A.2 Setup for §3 Experiments . 157
A.3 Setup for §4.1 Experiments . 158
A.4 Setup for §4.3 Experiments . 160
A.5 Setup for §5 Experiments . 161
A.6 Setup for §B Experiments . 161

B Appendix: patterns of indirect memory access, with stride 167

C Appendix: some more experiments with RSB 175
C.1 Description of Experiments . 175
C.2 Results for SpMV and SpMV-T, versus MKL 176
C.3 Single Threaded, RSB versus MKL 178
C.4 Big Matrices, versus MKL . 181
C.5 Concluding remarks . 184

D Appendix: notation and conventions 189

Bibliography 191

v

List of Figures

1.1 Matrix cage3*. 10
1.2 COO representation of matrix cage3*. 11
1.3 COR (coordinates ordered by rows) representation of matrix cage3*. 12
1.4 COC (coordinates ordered by columns) representation of matrix

cage3*. 13
1.5 SpMV listing for COO. 14
1.6 SpMV-T listing for COO. 14
1.7 SpMV listing for COO, unrolled once. 15
1.8 SpMV listing for COR. 16
1.9 SpMV-T listing for COR. 17
1.10 Strictly lower and upper triangles, and diagonal of matrix cage3*. 18
1.11 SpMV listing for COO, symmetric. 19
1.12 SpSV listing for COR, lower triangle, left-looking variant. 20
1.13 SpSV listing for COR, upper triangle, left-looking variant. . . . 20
1.14 CSR representation of matrix cage3*. 21
1.15 CSC representation of matrix cage3*. 22
1.16 SpMV listing for CSR. 22
1.17 SpMV listing for CSC. 23
1.18 SpMV-T listing for CSR. 23
1.19 SpMV-T listing for CSC. 24
1.20 SpMV listing for CSR, lower/upper triangle, symmetric. 25
1.21 SpMV listing for CSR, lower triangle, symmetric, diagonal implicit. 26
1.22 SpMV listing for CSR, loop unrolled. 27
1.23 SpSV listing for CSR, diagonal explicit. 28
1.24 SpSV listing for CSR, diagonal implicit. 28
1.25 SpSV-T listing for CSR, diagonal explicit. 29
1.26 Zig-Zag CSR representation of matrix cage3*. 30

2.1 Cache Blocked representation of matrix cage3*. 44
2.2 Z-sorted coordinates for 5x5,6x6,7x7,9x9 sized dense matrices. . 45
2.3 Z-Morton ordered COO representation of matrix cage3*. 45
2.4 CSB -ordered representation of matrix cage3*. 47
2.5 Quad-tree partitioning for matrix onetone, on machine M6. . . . 49
2.6 Recursive Blocked Triangular Solve operation breakdown. 51

vii

2.7 FIND QUAD SPLIT POINTS(I, J, n, frow, fcol, rows, cols) 53
2.8 Zb sorted coordinates for small dense matrices 54
2.9 Matrices ASIC 320k and torso1 partitionings. 57
2.10 SpMV performance on M5, compared to CSB. 58
2.11 SpMV performance on M7, compared to CSB. 59
2.12 SpMV performance on M2, compared to CSB. 60

3.1 Recursive subdivisions of L factors of matrix g7jac180. 66
3.2 Multithreaded SpMV for leaf submatrices of a RCSR matrix. . . 68
3.3 Multithreaded Lower Triangular Solve for an RCSR Matrix . . . 70
3.4 SpMV performance on M1, L factor matrices. 71
3.5 SpMV performance on M1, unsymmetric matrices. 72
3.6 SpMV performance on M1, symmetric matrices. 73
3.7 SpMV performance on M2, L factor matrices. 74
3.8 SpMV performance on M2, unsymmetric matrices. 75
3.9 SpMV performance on M2, symmetric matrices. 76
3.10 SpMV performance on M3, L factor matrices. 76
3.11 SpMV performance on M3, unsymmetric matrices. 77
3.12 SpMV performance on M3, symmetric matrices. 77
3.13 SpSV performance on M1, L factor matrices. 78
3.14 SpSV performance on M2, L factor matrices. 78
3.15 SpSV performance on M3, L factor matrices. 79

4.1 SpMV performance on M4, rectangular matrices. 85
4.2 SpMV performance on M4, square matrices. 85
4.3 SpMV performance on M2, rectangular matrices. 86
4.4 SpMV performance on M2, square matrices. 86
4.5 Index usage (bytes per nonzero) on M4, rectangular. 87
4.6 Index usage (bytes per nonzero) on M2, rectangular. 87
4.7 Index usage (bytes per nonzero) on M4, square. 88
4.8 Index usage (bytes per nonzero) on M2, square. 88
4.9 SpMV performance on M2, symmetric matrices. 91
4.10 SpMV performance on M4, symmetric matrices. 92
4.11 Index usage (bytes per nonzero) on M2, symmetric. 93
4.12 Index usage (bytes per nonzero) on M4, symmetric. 93
4.13 Matrix kkt power as partitioned on M4. 94
4.14 Matrix fcondp2 as partitioned on M4. 95
4.15 CSB vs RCSR SpMV performance on M4, unsymmetric. 96
4.16 CSB vs RCSR SpMV performance on M2, unsymmetric. 96

4.17 SpMV performance on M4, square matrices. 101
4.18 SpMV performance on M4, rectangular matrices. 101
4.19 SpMV performance on M2, square matrices. 102
4.20 SpMV performance on M2, rectangular matrices. 102
4.21 Index usage (bytes per nonzero) on M4, square. 103
4.22 Index usage (bytes per nonzero) on M4, rectangular. 103
4.23 Index usage (bytes per nonzero) on M2, square. 104
4.24 Index usage (bytes per nonzero) on M2, rectangular. 104
4.25 Matrices patents, diego-smtxMM-573x230k, partitioned on M4. . 106
4.26 Index usage (bytes per nonzero) on M4, symmetric. 107
4.27 Index usage (bytes per nonzero) on M2, symmetric. 108
4.28 SpMV performance on M2, symmetric matrices. 110
4.29 SpMV performance on M4, symmetric matrices. 110
4.30 Results for 8 cores on M4, comparing CSB, RCSR, RCSRH, and

RSB (unsymmetric matrices). 114
4.31 Results for 8 cores on M2, comparing CSB, RCSR, RCSRH, and

RSB (unsymmetric matrices). 114

5.1 Row pointers creation, during RSB assembly of matrix cage3*. . 120
5.2 First vertical split computed on matrix cage3*. 120
5.3 The first recursive splitting of cage3*. 121
5.4 Matrix cage3* after shuffle. 122
5.5 COO to RSB(IA, JA,VA). 123
5.6 COO to RSB s(sA, IA, JA). 124
5.7 δr(m, k, n,CS,ES,WS). 124
5.8 COO RowP (IA, JA, P, nnz,m). 125
5.9 Subrow Split(s, L,R,M, JA). 125
5.10 Search(JA, l, r, h). 125
5.11 RSB Split Node(s,Qnnz, L,M,R, IA, JA). 126
5.12 COO to RSB V (sA, P,VA). 128
5.13 COO to RSB J(sA, P, JA). 129
5.14 RSB Leaf Switch(sA). 130
5.15 RSB matrix assembly scaling on M2. 131
5.16 RSB matrix assembly scaling on M4. 132
5.17 RSB matrix assembly to SpMV time ratio on M4. 133
5.18 RSB matrix assembly to SpMV time ratio on M2. 133
5.19 Subdivision scaling on M4. 134
5.20 Subdivision scaling on M2. 134
5.21 Subdivision to SpMV time ratio on M4. 135

ix

5.22 Subdivision to SpMV time ratio on M2. 136
5.23 Shuffle scaling on M4. 136
5.24 Shuffle scaling on M2. 137
5.25 Shuffle to SpMV time ratio on M4. 138
5.26 Shuffle to SpMV time ratio on M2. 138
5.27 Recursive subdivisions of matrix cont11 l for respectively 1,2,4,8

threads on M4. 139
5.28 COO to RSB s Parallel(sA, IA, JA). 141
5.29 δp(m, k, nnz,CS,ES,WS, sA). 142
5.30 Subrow Split Search Only(s, P, IA, JA). 144

B.1 The relative performance of some linear scan primitives. 169
B.2 The relative performance of some linear scan primitives. 170
B.3 Absolute performance of linear scan primitives on M4. 171
B.4 Absolute performance of linear scan primitives on M6. 172
B.5 Absolute performance of linear scan primitives on M8. 173

C.1 SpMV performance on M4, versus MKL, 12 threads, square ma-
trices. 177

C.2 SpMV performance on M4, versus MKL, 12 threads, non-square
matrices. 177

C.3 SpMV performance on M4, versus MKL, 12 threads, symmetric
matrices. 179

C.4 SpMV performance on M4, versus MKL, one thread, square
matrices. 179

C.5 SpMV performance on M4, versus MKL, one thread, non-square
matrices. 180

C.6 SpMV performance on M4, versus MKL, one thread, symmetric
matrices. 180

C.7 SpSV performance on M4, versus MKL, single thread. 182
C.8 SpMV performance on M4, versus MKL, 12 threads, large un-

symmetric matrices. 182
C.9 SpMV performance on M4, versus MKL, 1 thread, large unsym-

metric matrices. 183
C.10 SpMV performance on M4, versus MKL, 1 threads large sym-

metric matrices. 183
C.11 SpMV performance on M4, versus MKL, 12 threads, large sym-

metric matrices. 187

List of Tables

1.1 Overview of various memory access patterns. 37
1.2 Overview of the amount of indirect accesses. 38

2.1 Matrices/codes best performing, for each machine in our test set. 61

A.1 Test machines for §2.4 experiments. 155
A.2 Compilers on test machines for §2.4 experiments. 156
A.3 Relevant (non-warnings) compiler flags used for §2.4 experiments. 156
A.4 Test matrices for §2.4 experiments. 157
A.5 Matrices for §3 experiments. 159
A.6 Summary of test environments for §3 experiments. 160
A.7 General matrices for §4.1 experiments. 162
A.8 Symmetric matrices for §4.1 experiments. 163
A.9 Test machines for §4.1 experiments. 163
A.10 Symmetric matrices for §4.3 experiments. 164
A.11 General square matrices for §4.3 experiments. 164
A.12 General non-square matrices for §4.3 experiments. 165
A.13 Test machines for §4.3 experiments. 165
A.14 Matrices test-set for §5 experiments. 166
A.15 Test machines for §B experiments. 166

C.1 Additional large symmetric matrices. 178
C.2 Additional square matrices. 181
C.3 Additional non-square matrices. 184
C.4 Additional large symmetric matrices. 185
C.5 Additional large general matrices. 186

xi

Acknowledgements

When I’ve heard for the first time Prof. Salvatore Filippone’s words “the issue
of efficient multiplication of a sparse matrix by a dense vector is worth the effort
of an entire PhD” I said to myself I would never bother with that.

Now I am grateful to Prof. Salvatore Tucci, who gave me the chance of
taking PhD studies, and Prof. Salvatore Filippone who proved me that I was
wrong. Indeed, he proved to me that I have been wrong many times, each time
providing me with balanced hints and motivation for further investigation.

I also had the delight of being confuted by Prof. Marcin Paprzycki, who
encouraged me into the design of a fully featured sparse matrix library. Then, I
said to him: “no way, that’s impossible”. Now I owe him great encouragement
and motivation, and great satisfaction in the problems I had to solve during
this work. He helped me into focusing my work by conceiving tangible, clearly
stated goals, and still providing with a very solid collaboration.

Thanks go to Pawe l Gepner, for allowing us to use computational facili-
ties at Intel EMEA, with the technical support from Jamie Wilcox and Victor
Gamayunov. Thanks also to Krzysztof Luka of AMD Polska for giving us access
to their facilities.

This thesis would not have been possible without the technical support of
Bart lomiej Solarz-Nies luchowski at IBS PAN in Warsaw, who tirelessly helped
us when our workstations melted, and granted us continuous access and data
storage into one of the main production servers at IBS PAN.

I am also grateful to Prof. Przemys law Stpiczyński (Marie Curie University
of Lublin) for his encouragement and sheer interest into my work, as well as his
unpaired friendliness.

Working on this thesis has been hard, although relieved by a number of
people who kindly provided me with suggestions and critiques. I am grateful
to Salvatore Filippone for having read and suggested improvements to early
versions of the draft. I wish to thank Prof. Patrick Amestoy from ENSEEIHT-
IRIT Toulouse and Prof. Anne C. Elster from NTNU Trondheim for having read
the whole thesis and providing several useful suggestions for improving its form,
as well and having spotted a number of typographical errors. I also wish to thank
committee member Prof. Paolo Franciosa for having spotted a subtle error in the
thesis draft, and promply suggesting a fix to it. I have received several accurate
suggestions on how to improve the introductory sections, as well as the overall
exposition, from Prof. Valeria Cardellini. Prof. Alberto Pettorossi has been able
to expose some weak points in the introductory sections, by just gleaning over

the thesis first pages; his critical spirit (that I have always appreciated as a
student in his classes) did the rest.

I also wish to thank Prof. Charles Leiserson and Dr. Matteo Frigo for having
provided me with a hard-to-find digital copy of an article by Morton ([G.M66]).

In the making of this thesis, I owe the most to my aunt Anna, who tirelessly
provided me with many suggestions on how to improve the English form of this
thesis, especially with the finer nuances I was simply not aware of.

I wish to thank my parents, and my beloved babcia, because they keep teach-
ing me what it really matters in life, and no PhD will ever teach.

I wish to thank friends who accompanied me in train and walk journeys
around Europe, bike trips around Warsaw woods, and getting lost in Italian
mountains. I also thank friends who accompanied me into thinking and appre-
ciating the beauty of what was already next to me. It has been great fun being
regarded (me!) as the most renowned cook around, in the dormitory that hosted
me in Warsaw; it has also been a pleasure making Ukraininan friends, there.

My PhD studies have been funded by a scholarship by the Italian Ministry
of Higher education; my years as an undergraduate have been partially funded
by scholarships, as well. I feel lucky for having had this opportunity.

E infine vorrei ringraziare con affetto proprio te, che sparisci nella notte.

xiii

Introduction

Although it is one of the oldest branches of mathematics, the field of numerical
analysis (intended as the study of algorithms for the problems of continuous
mathematics—see [TB97, p.323]), has seen its major development over the last
sixty years, most likely due to the introduction, development and growth of
computer systems, as well as computer science.

Nowadays, the solution to many continuous problems occurring in engineer-
ing, science, and finance requires the solution of linear systems, or computation
of eigenvalues and eigenvectors.

Numerical linear algebra is the branch of numerical analysis which studies
the solution to these problems. Usually, most of the information describing the
mentioned problems classes is represented and manipulated by means of tuples
of numbers, known as vectors and matrices. The foremost technology used to
automate this computation today is that of the digital computer which mecha-
nizes the handling of arrays of data representing vectors and matrices.

This thesis discusses techniques for performing efficiently some sparse nu-
merical linear algebra computations1 on currently available digital computers.

While generally, the efficiency of computer algorithms must be defined and
estimated theoretically around some abstract computation model, one of the
tasks of a computer engineer is to use both algorithmic and technical computer
knowledge in order to implement working algorithms that are efficient in the
physical resources usage.

Three prominent resources to consider are: energy, time, and space. To be
regarded as efficient, an implementation2 of a computational method should not
exceed the use of any of the aforementioned resources.

The metric most used in this thesis is that of time and, to a certain extent,
space, as we will often regard computations as being efficient (or in jargon, high
performance) if they take a relatively short time to run, use a modest amount
of memory, and/or employ a limited number of processing units. Since all of
our experiments have been carried out on single computers, and since savings in
memory usage usually implied savings in time, we had to focus mostly on time.

1That is, the algebraic computations involving numerical matrices which are sparse. A
sparse matrix is “any matrix with enough zeros that it pays to take advantage of them”; this
definition is attributed to James H. Wilkinson (see [Dav07]), one of the fathers of numerical
linear algebra.

2Intended as a combination of computer hardware and software.

1

We were lucky indeed, as it seems that arranging time-efficient computa-
tions into also being necessarily energy efficient, will be an additional problem
computer engineers shall face in the forthcoming future3.

3Energy consumption and power issues have been taken in consideration during the whole
history of microchip technology development, but only recently these have become major con-
straints in both chip and overall systems design (see Patterson and Hennessy [PH04, § 1.5,§ 3.6]
for an overview; see Fuller et al. [Com11, Ch. 3] for a whole chapter about the subject).

Contributions

This thesis is devoted to the study of efficient computer codes for linear algebra
operations on sparse matrices.

Specifically, we develop techniques for cache based, shared memory parallel
machines; that is, nowadays, the vast majority of the general purpose computers
in commerce4. In the near future, this kind of machines is expected to be even
more popular. We seek efficiency mainly on the problem instances where known
techniques bring inefficiencies, namely problems with matrices which are large,
in the sense they occupy a relevant portion of a single computer’s 5 random
access memory.

Our ultimate goal is that of designing a sparse matrix layout and algorithms
capable of supporting a set of operations broad enough for a whole Sparse
BLAS library6. As we will see, our techniques are based on a quad-tree based
organization of sparse matrices; that is, we subdivide a matrix in quadrants
repeatedly, building a tree structure having up to four children for each internal
node.

Our (recent) literature starting points are primarily the works of Alfredo
Buttari and Richard Vuduc. We follow their suggestion for automatically gen-
erating specialized, high performance numerical codes (e.g.: see their theses
[Vud03], [But06]), and to adapt or choose data structures with regard to both
the matrix and machine at hand. During the development of the core of this the-
sis material, we discovered Buluç’s (e.g.:[Bul10]) and Yzelman and Bisseling’s
(e.g.:[YB09]) work about sparse kernels with non-linear layouts. While Yzelman
and Bisseling develop cache oblivious sparse matrix formats7, and Buluç uses
some cache oblivious techniques as part of a whole, our data structures and

4We have chosen to focus on traditional general purpose computers CPUs, rather than
on recently developed graphical processing units (GPUs; e.g.: see Baskaran and Bordawekar
[BB09] for an application in sparse matrices computations) or non-traditional computer archi-
tectures (like gaming consoles; see Buttari et al. [APJ+07] for an example) capable of general
purpose computations.

5Intended here as “single node, multiple core computers”.
6BLAS stands for Basic Linear Algebra Subroutines; an application programmer interface

for reusable, high performance implementations, comprehensive of sparse extensions see (Duff
et al. [DHP02]).

7Or rather cache oblivious algorithms associated to that format, as given in Prokop’s
definition ([Pro99, p.10]): “We define an algorithm to be cache aware if it contains parameters
(set at either compile-time or runtime) that can be tuned to optimize the cache complexity for
the particular cache size and line length. Otherwise, the algorithm is cache oblivious.” rather
than that in Frigo et al. [FLPR]: “no variables dependent on hardware parameters, such as
cache size and cache-line length, need to be tuned to achieve optimality”.

3

techniques are ultimately cache aware, even if they are cache oblivious down to
a certain degree of approximation.

Although not described in detail in this thesis, a fundamental practical tool
we used throughout our work was a custom system for code generation; with
it, we have been able to both abstract from the numerical types at hand, and
perform careful code specialization in producing the various numerical kernels
a Sparse BLAS implementation offers.

Our published contributions so far are about:

• The development of the recursively quad-partitioned CSR format (RCSR):
([MFT+10]) — see §2.3.

• The development of shared memory parallel algorithms for fundamental
Sparse BLAS kernels for RCSR: SpMV (“y ← y + A x”)8, and SpSV
(“x← α L−1 x”)9([MFPT10b]) — see §3.

• Performance tuning of RCSR for the aforementioned kernels ([MFPT10c];
see §4.1), and a further format tuning and generalization towards a hybrid
format — RSB ([MFG+10]; see §4.3).

• A study of an aspect of sparse matrix computations often neglected in
published research: the time needed for instancing the matrices data struc-
tures, measured relatively to the time of a single SpMV, in the context of
a thread-parallel implementation ([MFPT10a]) — see §5.

In addition, the format we have developed allows shared memory parallel
implementations of the SpMV-T kernel (the transposed variant of SpMV) with
a degree of parallelism (and thus likely, performance) higher than allowed by
CSR: see §C. This last feature is perhaps one of the most valuable contributions
of our work.

Besides our literature contributions, we also wish to pay a tribute to the
free software community by soon releasing our prototypal code with a free soft-
ware10 licensing, and by interfacing it to an existing (free software) project: the

8That is, the update “∀i ∈ [1, ..,m], yi ← yi +
∑k

j=1 aij xj”.
9That is, the update (performed in the order 1, ..,m to meet dependencies)

“∀i ∈ [1, ..,m], xi ← (xi −
∑i−1

j=1 aij xj)/aii”. For more details about our notation conven-
tions, see §D.

10That is, software whose licensing lets “users freedom to run, copy, distribute, study,
change and improve the software”, according to the Free Software Foundation’s definition
(see [FSF10]).

PSBLAS library for distributed memory parallel Sparse BLAS computations
(Filippone and Colajanni [FC00]).

Without availability of free software, Information Technology would be nowhere
as interesting as it is today.

5

Thesis Outline

Here we briefly outline the organization of this thesis. In Ch.1 we introduce well-
known, non hierarchical sparse matrix representation formats and algorithms.
We describe the COO and CSR formats (§1.1 and §1.2), discussing variants of
algorithms for the implementation of the basic operations of our interest: multi-
plication by a vector (SpMV) and triangular solution (SpSV). When presenting
these formats and algorithms (as pseudo-code; see §D for our notation), we also
give mention to many performance-related aspects when implementing them in
a compiled language (say C or Fortran) on a machine of our interest (shared
memory parallel, cache based). In the discussion, we also mention modifications
for supporting transposed, symmetric, and other format/operation variants; two
variations of the CSR format (§1.2.4); other useful operations (§1.3). Since a
central issue to performance is the memory access pattern of the discussed al-
gorithms, we summarize this information in tabular format, in §1.4. We close
the chapter with literature references (§1.5).

In Ch.2 we introduce the topic of hierarchical representation formats of
sparse matrices. After a literature introduction (§2), we present two hierarchical
matrix formats which are of particular interest to us: CB and CSB (respectively
in §2.1 and §2.2). Then we are ready to introduce our own techniques, beginning
with the hierarchical, recursive CSR (RCSR) layout, in §2.3. There we give
both a serial and a trivial dual-thread parallel formulation of the computational
algorithms of interest. In §2.4 we present performance experiments for a first
implementation of this layout.

In Ch.3, we develop multi-threaded shared memory algorithms for the RCSR
format (§3.1, §3.2). We present performance results for these techniques in §3.3.

By taking note of the performance results obtained for the RCSR format in
Ch.3, we devote Ch.4 to the tuning of RCSR. We first introduce a technique for
storing RCSR matrices with shorter indices in §4.1, looking at its performance
in §4.2. Then we extend the definition of our recursive layout into supporting
leaf submatrices in COO format in §4.3, presenting the performance results in
§4.4. We name the hybrid format resulting from these modifications Recursive
Sparse Blocks (RSB).

In Ch.5, after a literature introduction (§5.1) and a review of basic properties
of the RSB data structure (§5.2), we present partially parallel algorithms for
building RSB matrices (§5.3, §5.4). In the chapter, we report ratios of the time
for building an RSB matrix instance to that for executing a single SpMV oper-
ation, both serially and in parallel. We close the chapter outlining an enhanced

parallel build algorithm in §5.6.
We close the thesis with Ch.6. There we also present some future work: a

number of possible minor enhancements to RSB (§6.2), as well as major ones
(§6.3).

We have chosen to give the reader some supplementary material which is not
essential into following the main thesis discourse. In §A, we give details for the
setup of the experiments made throughout the thesis. In §B, we perform some
proof-of-concept memory scanning experiments in order to justify a number of
claims made in the thesis. In §C, we present some extra performance results of
our RSB prototypal code, when compared to a proprietary, highly optimized
computational library. A description of notation conventions used in the thesis
is given in §D.

7

1
Representation of Sparse Matrices

Overview

In this chapter, we give an overview of the most common ways for representing
sparse matrices and performing computations on them on the currently avail-
able general purpose computers; that is, using their Central Processing Units
(CPUs)1.

We describe data structures and provide the well-known algorithms for per-
forming most common operations on them, like multiplication or triangular solve
by a dense vector.

Although the term data structure or sparse matrix layout in memory would
be more appropriate than (storage) format, we will often use the latter for
historical reasons.

Reports on exploiting particular data structures for sparse matrices date
back to late sixties. During the seventies and eighties, as sparse computations re-
search blossomed, representation formats were developed to suit particular algo-
rithms and/or architectures (see Pissanetzky [Pis], Dongarra et al. [DDSvdV98,
Ch. 1])2.

Reference information for “classical” sparse matrix formats and algorithms

1Recent development of technologies for doing these computations on GPUs (Graphical
Processing Units) has sometimes led to different techniques, although one of the recurrent
themes for optimization here, is often similar to that for CPUs: arranging data for locality
and avoiding code branches. For instance in [BB09, § 4], Baskaran and Bordawekar describe
what seems a sparse blocked (see §2.1) BCSR (see §1.2.4) format-based optimization.

2And to a good extent, we will be doing so in the research presented in this thesis.

9

A =

0.66667 0.36656 0.30011 0.36656 0.30011
0.10004 0.53341 −1 0.20007 0
0.12219 0 0.5777 0 0.24437
0.05002 0.10004 0 0.28331 0.18328
0.06109 0 0.12219 0.15006 0.27224

nnz(A) = 20 m(A) = 5 k(A) = 5

Figure 1.1: Matrix cage3*. We denote the number of non zero entries of A
by nnz(A); its rows count by m(A); its columns count by k(A). For a sparse
representation of A, we would like to use as little data as possible, in order
to minimize use of available random access memory and prevent unnecessary
computations (as usually operations involving zeroes are).

is contained in many books: like Barrett et al. ([BBC+94, § 4.3.1]), Saad ([Saa03,
§ 3.4]), or Pissanetzky ([Pis]).

In §1.1 and §1.2, we introduce the two most well known formats in use to-
day; namely COO and CSR, and some variations of them, as well as discussing
possible implementations for the operations we are interested in. In §1.3, we
mention other operations commonly performed on sparse matrices, and com-
ment on them, in relation to our choices (in our role as sparse matrix format
designers). We come back with a summary discussion, and a concise account of
the memory access patterns of the algorithms presented in §1.1,§1.2, in §1.4.

Finally, in §1.5.1, we mention some more formats which may be relevant
to our future discussion, and conclude by giving a number of related literature
pointers in §1.5.2.

Throughout this and the following chapter, we use matrix cage3*, shown in
Fig. 1.1, as an example for illustrating the layout of sparse matrices in memory,
across formats. Matrix cage3* is obtained by adding (for our convenience)
the −1 value in position (2, 3) of matrix cage3. Matrix cage3 belongs to the
University of Florida sparse matrix collection. This collection, authored by Tim
Davis, is the most complete publicly available one; it also incorporates existing
historical collections of representative sparse matrix problems and matrices. See
Davis ([Dav10]) for a description of the above mentioned collection3. Most of the
experiments in this thesis were conducted on matrices from the above collection.
Of course, for these experiments, we have chosen matrices which are much larger

3See also the Test for Large Systems of Equations project (http://www.gridtlse.org/,
led by Patrick Amestoy) for a comprehensive database of publicly available linear systems,
software, and related statistics.

http://www.gridtlse.org/

A =

0.66667(3) 0.36656(1) 0.30011(2) 0.36656(4) 0.30011(5)

0.10004(6) 0.53341(7) −1(8) 0.20007(9) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(13) 0.10004(14) 0 0.28331(15) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

IA=(1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5)
JA=(2 3 1 4 5 1 2 3 4 1 3 5 1 2 4 5 1 3 4 5)
V A=(0.36656 0.30011 0.66667 0.36656 0.30011 0.10004 0.53341 -1 0.20007
0.12219 0.5777 0.24437 0.05002 0.10004 0.28331 0.18328 0.06109 0.12219 0.15006
0.27224)

Figure 1.2: A COO representation of matrix cage3*. Superscripts of each matrix
entry represent the position index of that entry in the input arrays. Notice that
nonzeroes are listed in no particular order in the three arrays.

and sparser than toy example matrix cage3*. When describing a sparse matrix
A, we will often denote the number of its non zero entries (or nonzeroes) with
nnz(A); its rows count by m(A); its columns count by k(A).

1.1 Coordinate Representations

The simplest of the sparse storage formats is commonly known as COO, as it
represents a matrix A with m rows and k columns just as a list of coordinates on
a two dimensional grid, with associated values; that is, by enumerating explicitly
its nonzero entries.

This representation uses two integer arrays for storing the coordinate indices:
IA, JA, and one (VA) with the actual numerical values.

All arrays are long nnz (A). In IA and JA, it is customary to store indices
starting with 1 when programming in the Fortran language, and with 0 in the C
language. In practical applications, sometimes it is desirable to store explicitly
certain zero values for later modification. In these cases, the explicit zeroes (in
jargon, structural nonzeroes) are stored in addition to the effective nonzeroes,
contributing to the overall stored nonzeroes count.

See Fig. 1.2 for an example instance of matrix cage3* represented with COO
arrays. The superscripts above each matrix A nonzero coefficient show the (one-
based) position of the coefficient data (row index, column index, numerical
value) in the arrays IA, JA,VA.

11

A =

0.66667(1) 0.36656(2) 0.30011(3) 0.36656(4) 0.30011(5)

0.10004(6) 0.53341(7) −1(8) 0.20007(9) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(13) 0.10004(14) 0 0.28331(15) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

IA=(1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5)
JA=(1 2 3 4 5 1 2 3 4 1 3 5 1 2 4 5 1 3 4 5)
V A=(0.66667 0.36656 0.30011 0.36656 0.30011 0.10004 0.53341 -1 0.20007
0.12219 0.5777 0.24437 0.05002 0.10004 0.28331 0.18328 0.06109 0.12219 0.15006
0.27224)

Figure 1.3: COR (coordinates ordered by rows) representation of matrix cage3*.
Notice that the sole difference with Fig. 1.2 is the order of elements in the three
arrays.

Usually, when referring to COO, one does not assume any ordering among
the elements (see Saad [Saa03, 3.4]). However, for performance reasons, soft-
ware using COO defines some particular order: for instance, PSBLAS and
SPARSKIT (see Saad [Saa94]) do not assume any ordering in the represen-
tation, in general. PSBLAS, however4, sorts by rows the COO representation
whenever appropriate according to the required operations.

From now on, we will denote by COR a “COO ordered by rows”, and by
COC a “COO ordered by columns”, while continuing using COO when no order
is specified. In our definition, we also assume that COR has coefficients ordered
by column index within rows, and COC is ordered by row index within columns.
In Fig. 1.3, we show an example of the row-major (COR) COO representation;
in Fig. 1.4, its transposed ordering (COC).

Assuming ai,j 6= 0 to be the numerical value of matrix A at the ith row
and jth column5, for all of the above representations we have: VA(l) = ai,j ;
IA(l) = i; JA(l) = j for some 1 ≤ l ≤ nnz(A).

For COR and ∀1 ≤ p < q ≤ nnz(A), we also have6 either:

IA(p) < IA(q)

or

4Version 2.4.
5For more details about our notation conventions, see §D.
6In the presented algorithms, we assume no duplicates in these arrays. In real applica-

tions, duplicate values are handled according to some policy, as it could be keeping the first
occurrence, keeping the maximum value, summing duplicates, or averaging.

A =

0.66667(1) 0.36656(6) 0.30011(9) 0.36656(13) 0.30011(17)

0.10004(2) 0.53341(7) −1(10) 0.20007(14) 0

0.12219(3) 0 0.5777(11) 0 0.24437(18)

0.05002(4) 0.10004(8) 0 0.28331(15) 0.18328(19)

0.06109(5) 0 0.12219(12) 0.15006(16) 0.27224(20)

IA=(1 2 3 4 5 1 2 4 1 2 3 5 1 2 4 5 1 3 4 5)
JA=(1 1 1 1 1 2 2 2 3 3 3 3 4 4 4 4 5 5 5 5)
V A=(0.66667 0.10004 0.12219 0.05002 0.06109 0.36656 0.53341 0.10004 0.30011
-1 0.5777 0.12219 0.36656 0.20007 0.28331 0.15006 0.30011 0.24437 0.18328
0.27224)

Figure 1.4: COC (coordinates ordered by columns) representation of matrix
cage3*. Notice that the sole difference with Fig. 1.2 is the order of elements in
the three arrays.

IA(p) = IA(q) and JA(p) < JA(q).
For COC, the same relation holds, after exchanging the two index arrays.
On current cache based machines, whether arranging the data layout and

algorithms for COR or for COC can have an impact on the computation per-
formance, as the actual order of memory references is different. Most CPUs
are capable of prefetching memory locations in cache, often favouring sequen-
tial accesses rather than random accesses; see manuals for popular CPUs: Intel
[AMD07, § 3.9] or AMD [Int08a, Ch. 7]. Even if not completely random, the
indirect accesses (for instance, accessing a sequence of memory locations at the
offsets given by an indices array) trick current prefetch engines into failure.

If the CPU had a prefetch device capable of preloading memory locations by
looking ahead of the contents of the indices array (rather than its address only),
the negative impact of indirect references would be much lower7. However, it
is not clear whether such a CPU functionality would be general enough to be
taken in consideration by current CPU manufacturers.

In the following sections, we provide listings for common algorithms for the

7Indeed, vector processors built between 1980’s and 1990’s supported exactly this kind of
indirect addressing, also known as sparsed vector gather. In Dekeyser et al. ([DMP90]): “..Now,
nearly all vector supercomputers provide instructions in their instruction set to realize such
operations (Cray X-MP/4, Cray 2, Cray Y-MP, Fujitsu VP-200, NEC SX-2).”; see also
Cheng ([Che89]) for an overview on the IBM 3090 and Cray X-MP machines. Current vector
extensions to scalar CPUs do not support indirect addressing, but things may change, as
additional instruction sets are being developed by the major chip manufacturers (see also
Gebis and Patterson — [GP07]).

13

unordered and two ordered variants of COO.

1.1.1 SpMV for COO/COR/COC

The general form of the SpMV update, required by iterative methods is that of
“y ← β y + α A x”. Algorithm listings we give here implement SpMV as
“y ← y + A x”, which does not make substantial difference, in our discussion.

In the following, we discuss the basic algorithms, in some cases with alter-
native listings, and point out differences and potential shortcomings.

When no particular ordering of elements is present in the input arrays, an
SpMV algorithm for COO can not make any assumption on subsequent nonzero
positions. For this reason, the listing in Fig. 1.5 performs two index reads, one
floating point number load8, and one vector update (of course, besides floating
point multiply and add operations) for each encountered nonzero.

Figure 1.5: SpMV listing for COO.
for l← 1 to nnz do1

i← IA(l)2

j ← JA(l)3

y(i)← y(i) + VA(l)x (j)4

end5

Performing the transposed SpMV, defined as “y ← y + AT x” (we will
refer to as SpMV-T) is equivalent to performing SpMV with JA and IA arrays
swapped. See listing in Fig. 1.6.

Figure 1.6: SpMV-T listing for COO.
for l← 1 to nnz do1

i← IA(l)2

j ← JA(l)3

y(j)← y(j) + VA(l)x (i)4

end5

Optimization of such an algorithm’s code is difficult to achieve: explicit data
reuse is impossible, because indices and coefficients arrays are only used once,

8We use terms load and read interchangeably, and do similarly for store and write.

since a single matrix pass is performed. Therefore, using some explicit prefetch
instruction would only work for the aforementioned arrays, whose entries are
being used only once. The right-hand side9and result arrays, since they are
accessed at locations which depend on the current values of IA(l) and JA(l),
are potential cache polluters, too, since nothing could be said about their reuse.
The only relevant possible optimization for this loop is explicit unrolling ; see
Fig. 1.7 for an example of loop unrolled SpMV listing.

Figure 1.7: SpMV listing for COO, unrolled once.
l← 11

while l + 1 ≤ nnz do2

i0 ← IA(l + 0); i1 ← IA(l + 1)3

j0 ← JA(l + 0); j1 ← JA(l + 1)4

y(i0)← y(i0)−VA(l + 0)x (j0)5

y(i1)← y(i1)−VA(l + 1)x (j1)6

l← l + 27

end8

if l ≤ nnz then y(i)← y(i) + VA(l)x (JA(l))9

Such an unrolled variation of code would effectively halve the count of loop-
control instructions executed at runtime, compared to the computational in-
structions. Since in practice the number of nonzeroes is quite high, unrolling as
much as a dozen of times may seem an attractive option to smash the loop con-
trol instructions impact. Another beneficial effect is the slightly reduced impact
on branch prediction hardware. In practice, on the architecture we have taken
in consideration, phenomena of register spilling may occur. That is, while han-
dling more variables than available registers, the compiler may produce code
which moves data back and forth from and to the memory, thus generating
unnecessary traffic. For this reason, excessive loop unrolling shall be avoided.

If the COO input is known to be ordered by rows, a more effective code
could be developed, as listed in Fig. 1.8.

Here, an accumulator variable acc is used and at most one write instruction
per row is issued. Most real world matrices feature more nonzeroes than rows,
so such a formulation reduces the count of memory writes, when compared to

9Informally, the symbolic object at the right of the matrix symbol, in an expression; here,
we mean the x vector (or its corresponding array, if thinking in terms of memory areas rather
than in terms of mathematical objects) in “y ← y + A x”.

15

Figure 1.8: SpMV listing for COR.
l← 11

while l ≤ nnz do2

i← IA(l)3

acc← 0.04

repeat5

j ← JA(l)6

acc← acc+ VA(l)x (j)7

l← l + 18

until l > nnz or IA(l) > i9

y(i)← y(i) + acc10

end11

the unordered COO variant10. We observe that the amount of memory which is
being read is the same; but as observed before, accessing contiguous elements
is much cheaper. So here, the elements in the y array are updated in sequence,
and within each line, x is accessed at monotonically increasing locations. Let’s
ponder some corner case such a code may face. We notice that the inner loop
condition depends on two checks: a first one, checking whether the updated
nonzero index l is still within boundaries (nnz); a second one, checking whether
the row i has changed. Since the first check is likely to succeed nnz times, the
second check will be performed each time, too. In the past such a situation would
have been undesirable, but nowadays the cost of an integer comparison is irrele-
vant to the cost of loading from memory and processing some dozen of bytes11.
If absolutely necessary, one could remove the inner “l > nnz” comparison and
forcing the routine users to put an extra marker numerical index at IA(nnz+1).
This would allow the inner loop to terminate properly while performing a single
comparison per iteration, and since the removed check is actually guarding the
outer loop, no further modification would be necessary. However, in the context
of code reuse and modularity, resorting to this solution would be not desirable,
because it would break common usage habits, and introduce incompatibility to a
vast amount of existing code. Without a guarantee of no empty row occurrence,
there is no simple way for avoiding the double check in the inner loop (without

10However, note that this is not true for arbitrary submatrices of common matrices.
11Here, we would rather be concerned with the cost of incorrect branch predictions, or the

memory load latency, as we will discuss in §1.4.

extra, precomputed information, of course).

The important thing to keep in mind with this formulation is that sequences
of very sparsely populated (or empty) rows (even with an overall high ratio
of nonzeroes to rows) would make the inner loop iterate over very few (or no)
elements, losing the advantage of using the acc accumulator variable with the
y(i)← y(i) + acc update at the end of the outer loop.

We will not discuss more variations of this listing, but point out only that
knowledge of the matrix for a given problem may be helpful in the optimization
of such a seemingly simple computational kernel.

For transposed SpMV on COR (see Fig. 1.9), the x and y vectors are accessed
in transposed order; the update of y elements is not anymore sequential, and
it cannot be reduced to one per loop only; on the other hand, the multiplicand
element x(i) remains the same through the entire row sweep, so it could be
cached with profit with an accumulator variable xi.

Figure 1.9: SpMV-T listing for COR.
l← 11

while l ≤ nnz do2

i← IA(l)3

i0 ← i4

xi ← x (i)5

repeat6

j ← JA(l)7

y(j)← y(j) + VA(l)xi8

l← l + 19

i← IA(l)10

until l > nnz or i > i011

end12

Summing up, while the listing in Fig. 1.8 performs m sequential, cacheable
writes and nnz unpredictable (or rather, indirect) memory accesses (in a k -sized
array–the right-hand side vector), listing in Fig. 1.9 performs nnz unpredictable
writes (in an m-sized array–the result vector) and m sequential, cacheable reads.
Since memory store operations are usually more costly than load ones, SpMV-T
for COR performs usually slower than SpMV, especially if nnz� m.

Listings for COC ordering are analogous to the aforementioned, with a simple
input modification: namely, the algorithm of SpMV for COR would compute

17

L =

0 0 0 0 0

0.10004 0 0 0 0
0.12219 0 0 0 0
0.05002 0.10004 0 0 0
0.06109 0 0.12219 0.15006 0

D =

0.66667 0 0 0 0

0 0.53341 0 0 0
0 0 0.5777 0 0
0 0 0 0.28331 0
0 0 0 0 0.27224

U =

0 0.36656 0.30011 0.36656 0.30011
0 0 −1 0.20007 0
0 0 0 0 0.24437
0 0 0 0 0.18328
0 0 0 0 0

Figure 1.10: Strictly lower triangle L, strictly upper triangle U , and diagonal
D of matrix cage3*. For our convenience, when discussing symmetric matrix
representation or the triangular solve operation, we will use L and U for denoting
the non-strictly lower and upper triangles (that is, triangles comprehending the
diagonal D).

SpMV-T, if called with IA and JA COC arrays swapped; the algorithm of SpMV-
T for COR would compute SpMV, if called with the COC arrays swapped.

1.1.2 SpMV for COO/COR/COC, Symmetric

Coordinate format variants could handle the symmetric matrix -vector multiply
operation as well. By definition of a symmetric matrix A, it holds A = AT . This
means that the strictly lower triangle L equals the transposed strictly upper
triangle UT .

Since representing explicitly U = LT would be redundant, only the (non
strictly) lower triangle is stored. The SpMV algorithm is modified accordingly,
in a way to perform an additional, transposed update, for each non diagonal
matrix element.

For (the unordered) COO, a symmetric SpMV algorithm performs for each

nonzero element ai,j
def
= aj,i, i 6= j, both “yi ← yi + aij xj” and “yj ← yj + aji xi”.

The algorithm is listed in Fig. 1.11.

Figure 1.11: SpMV listing for COO, symmetric.
for l← 1 to nnz do1

i← IA(l)2

j ← JA(l)3

y(i)← y(i) + VA(l)x (j)4

if i 6= j then y(j)← y(j) + VA(l)x (i)5

end6

Since A = AT , we have y + Ax = y + ATx, and so a symmetric SpMV-T
reverts to the Fig. 1.11 algorithm (for both COR and COC).

By combining the use of auxiliary variables, just as in Fig. 1.8, the listing in
Fig. 1.11 may be modified to save some array write. Also similar considerations
pertain to individual pointer arithmetics and load/store count optimizations.
Notice that here, the nnz unpredictable (but potentially cacheable) writes are
unavoidable.

A last consideration should be made for the case of a “y ← β y + α A x”
implementation. In the case when y vector scaling is needed (β 6= 1), each of y ’s
elements should be scaled by β exactly once. By inspecting listings in Fig. 1.11,
Fig. 1.9, Fig. 1.8, Fig. 1.6, Fig. 1.5, it is clear that there is no simple way for
this update, unless prepending a loop for scaling y ahead of each listing. A valid
alternative for COR, would be to reformulate the inner loops to cycle over all of
the matrix rows, and scaling the y vector regardless of the possible presence of
empty rows. This formulation would allow keeping exactly one y array update
per row.

1.1.3 SpSV for COR

With SpSV, we either refer to the operation “x← L−1 x” (forward substitution)
or “x ← U−1 x” (backward elimination). In either the case, performing SpSV
on unordered COO would be extremely inefficient, because of the dependencies
posed by the operation; a row or column structure is needed for efficient variable
substitutions.

For SpSV on the COR representation of a lower triangle, see listing in
Fig. 1.12. For the upper triangle version, see listing in Fig. 1.13.

Both formulations of SpSV access elements of the matrix coefficients VA in
linear monotonic order (ascending in the case of Fig. 1.12; descending in the
case of Fig. 1.13). In both cases, x is accessed repeatedly during substitution at

19

Figure 1.12: SpSV listing for COR, lower triangle, left-looking variant.
l← 11

for i← 1 to m do2

while JA(l) < i do3

j ← JA(l)4

x(i)← x(i)− x(j)VA(l)5

l← l + 16

end7

x(i)← x(i)/VA(l)8

l← l + 19

end10

elements determined by the matrix nonzeroes pattern. If a variable is used for
substitutions, no more than one vector write per row is performed.

For the transposed or COC variations of these algorithms, please see the next
section (CSR/CSC versions differ only slightly from COR/COC formulations,
indeed).

Figure 1.13: SpSV listing for COR, upper triangle, left-looking variant.
l← nnz1

for i← m down to 1 do2

d← VA(l)3

l← l − 14

while IA(l) = i do5

j ← JA(l)6

x(i)← x(i)− x(j)VA(l)7

l← l − 18

end9

x(i)← x(i)/d10

end11

A =

0.66667(1) 0.36656(2) 0.30011(3) 0.36656(4) 0.30011(5)

0.10004(6) 0.53341(7) −1(8) 0.20007(9) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(13) 0.10004(14) 0 0.28331(15) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

PA=(1 6 10 13 17 21)
JA=(1 2 3 4 5 1 2 3 4 1 3 5 1 2 4 5 1 3 4 5)
V A=(0.66667 0.36656 0.30011 0.36656 0.30011 0.10004 0.53341 -1 0.20007
0.12219 0.5777 0.24437 0.05002 0.10004 0.28331 0.18328 0.06109 0.12219 0.15006
0.27224)

Figure 1.14: CSR representation of matrix cage3*. In the following, when it will
be clear from the context that we are dealing with CSR, we will call PA simply
IA.

1.2 Compressed Sparse Stripes

In this section, we present pseudocode for the classical (see Carney et al. [CHL+96,
§ 3.3.3], Barrett et al. [BBC+94, § 4.3.1]) Compressed Sparse Rows (CSR) and
Compressed Sparse Columns (CSC) ([CHL+96, § 3.3.2], [BBC+94, § 4.3.1]) for-
mats and outline the algorithms for performing the most common matrix op-
erations on them. We regard the CSR and CSC as Compressed Sparse Stripes
formats.

CSR stores data in three arrays: VA,JA,PA. Nonzero elements are laid out on
consecutive rows; rows information is compressed by means of the rows pointers
array PA. Therefore in CSR, numerical values (VA) and their column indices
(JA) are stored in the same exact way as in COR, and contain nnz elements.
Similarly in CSC numerical values (in VA) and their row indices (in the IA
array) are stored by columns, just as in COC.

In CSR (CSC) there is one row (column) pointer entry for each one of the
matrix m rows (k columns): the i-th row (column) pointer contains the index
of the first nonzero element of row (column) i in the remaining two VA,JA
(VA,IA) arrays. The row (column) pointers array is sized m + 1 (k + 1): the
last array element being the first index after the last element of the VA array
(customarily, nnz in C, nnz + 1 in Fortran). This extra element is used as an
end of loop delimiter; see algorithm listings in the next sections for its usage.

See representations of cage3* with CSR in Fig. 1.14 and with CSC in Fig. 1.15.

21

A =

0.66667(1) 0.36656(6) 0.30011(9) 0.36656(13) 0.30011(17)

0.10004(2) 0.53341(7) −1(10) 0.20007(14) 0

0.12219(3) 0 0.5777(11) 0 0.24437(18)

0.05002(4) 0.10004(8) 0 0.28331(15) 0.18328(19)

0.06109(5) 0 0.12219(12) 0.15006(16) 0.27224(20)

IA=(1 1 1 1 1 2 2 2 2 3 3 3 4 4 4 4 5 5 5 5)
PA=(1 6 9 13 17 21)
V A=(0.66667 0.36656 0.30011 0.36656 0.30011 0.10004 0.53341 -1 0.20007
0.12219 0.5777 0.24437 0.05002 0.10004 0.28331 0.18328 0.06109 0.12219 0.15006
0.27224)

Figure 1.15: CSC representation of matrix cage3*. In the following, when it will
be clear from the context that we are dealing with CSC, we will call PA simply
JA.

1.2.1 SpMV for CSR/CSC

The SpMV algorithm for CSR (Fig. 1.16) works by traversing the matrix by
rows. The memory access pattern for arrays VA and JA is the same as that of
COR (see Fig. 1.8). As with COR, it is possible to arrange the code for exactly
m updates to the y array (one per row visit). To achieve this it is sufficient
to modify the Fig. 1.16 listing in a way to move the y update to the outer
loop, right after the inner loop. In the inner loop, an accumulator variable shall
be used instead (and it is likely that the compiler will rearrange it to reside
in a register). The accumulator variable shall be re-initialized to zero at the
beginning of each row, i.e.: before each inner loop.

Figure 1.16: SpMV listing for CSR.
for i← 1 to m do1

for l← PA(i) to PA(i+ 1)− 1 do2

j ← JA(l)3

y(i)← y(i) + VA(l)x (j)4

end5

end6

With CSC (see algorithm in Fig. 1.17), the access pattern to arrays IA and
VA is the same as that of COC (see Fig. 1.8): y vector elements are updated for

each nonzero entry.
Note that for a “y ← β y + α A x” update on CSR, a statement like

yi ← βyi could be issued at the beginning of each row i, in Fig. 1.16, whether
row i is empty or not. Contrary to CSR, listings for CSC cycle on columns, so
there is no direct way to scale y using exactly one operation per row, in the
outer loop. The easiest alternative for handling this case would therefore be
adding an extra y vector update loop at the beginning of Fig. 1.17 listing. The
obvious performance consideration of this update concerns the y vector, which
is likely to be cached during access, but with no guarantee of reuse.

Figure 1.17: SpMV listing for CSC.
for j ← 1 to k do1

for l← PA(j) to PA(j + 1)− 1 do2

i← IA(l)3

y(i)← y(i) + VA(l)x (j)4

end5

end6

Since it is often the case that memory write is slower than read, for a given
matrix, CSC SpMV could be slightly slower than CSR SpMV, especially if nnz�
k (which is almost the norm, for most practical applications). For the same
reason, SpMV-T for CSC would be faster than for CSR.

Figure 1.18: SpMV-T listing for CSR.
for i← 1 to m do1

for l← PA(i) to PA(i+ 1)− 1 do2

j ← JA(l)3

y(j)← y(j) + VA(l)x (i)4

end5

end6

In Fig. 1.18 and Fig. 1.19 we list code for the computation of transposed
SpMV for CSR and CSC. Notice that here, the implementation of a y ← βy
scaling could be possible in a single pass only for CSC, as in the transposed
case, y is k-sized, and our listing loop steps in each column exactly once. The
transposed CSR version could scale the y vector only by means of an outer loop

23

Figure 1.19: SpMV-T listing for CSC.
for j ← 1 to k do1

for l← PA(j) to PA(j + 1)− 1 do2

i← IA(l)3

y(j)← y(j) + VA(l)x (i)4

end5

end6

on the k entries of y .
After all, the semantics of the SpMV-T update on CSR is that of the SpMV

update for CSC, after the appropriate swap of m, k and aliasing the JA array
as CSC’s IA.

1.2.2 SpMV for CSR/CSC, Symmetric, and Variants

A notable variant which is interesting to handle is that of symmetric matrices.
With CSR and CSC, symmetric matrices are handled in the same manner to
COR/COC (as seen in §1.1.2), that is by avoiding redundant storage, and by
using specialized, symmetric kernels. Since A = AT , then L = UT and (L+D) =
(U +D)T , so the specialized kernel computes y ← y+Ax as y ← y+ (L+D+
LT)x. See Fig. 1.20 for a listing capable of handling a symmetric matrix stored
as either lower or upper triangle.

In the case of CSC, exactly the same code would be used, since symmetric
matrices are square (m = k) and the update is symmetric also. There is one
complication affecting the result vector scaling version of this code, in the case
of an upper stored matrix. Namely, scaling of the y vector would not possible
in the external loop, because the upper storage would lead into updating rows
before scaling them. For this reason, to use a y-scaling version of this code on
an upper stored matrix, one should reverse the order of rows visit (from the last
one to the first one), or simply add an extra outer scaling loop (which would be
costly, of course).

Another notable implementation variant to be handled would be that for a
diagonal implicit representation. In that case, handling an empty row i would
still push the need for the single, unsymmetric contribution of aiixi. Usually, an
implicit aii is assumed to be unitary, therefore its contribution can be computed
by the summation of the entire x vector to y . See the adapted listing in Fig. 1.21
for this. Notice also that an accumulator variable could be used for caching

Figure 1.20: SpMV listing for CSR, lower/upper triangle, symmetric.
for i← 1 to m do1

if PA(i) = PA(i+ 1) then continue2

j ← JA(PA(i))3

y(i)← y(i) + VA(PA(i))x (j)4

if j 6= i then5

y(j)← y(j) + VA(PA(i))x (i)6

end7

for l← PA(i) + 1 to PA(i+ 1)− 2 do8

j ← JA(l)9

y(i)← y(i) + VA(l)x (j)10

y(j)← y(j) + VA(l)x (i)11

end12

if PA(i+ 1) = PA(i) + 1 then continue13

j ← JA(PA(i+ 1)− 1)14

y(i)← y(i) + VA(PA(i+ 1)− 1)x (j)15

if i 6= j then16

y(j)← y(j) + VA(PA(i+ 1)− 1)x (i)17

end18

end19

25

partial results pertaining to the current row (or column, in the case of CSC),
thus reducing the number of necessary memory writes from nnz random ones,
to m sequential, monotonically increasing ones.

Figure 1.21: SpMV listing for CSR, lower triangle, symmetric, diagonal
implicit.
for i← 1 to m do1

y(i)← y(i) + x (i)2

if PA(i) = PA(i+ 1) then continue3

for l← PA(i) to PA(i+ 1)− 1 do4

j ← JA(l)5

y(i)← y(i) + VA(l)x (j)6

y(j)← y(j) + VA(l)x (i)7

end8

end9

In all of the considered listings, the most profitable optimization would be
that of explicit inner loop unrolling. In the case of highly populated rows, this
optimization would lead to a more effective usage of registers and lessen branch
mispredictions impact (because of the reduced number of loops performed). See
the example in Fig. 1.22 for a basic loop unrolled version of SpMV for CSR, and
notice the two inner loops: the first one proceeding three nonempty columns at
a time; the second processing the remaining one or two non-empty columns. It
is clear that an input matrix having many loosely populated rows (say with up
to three nonzeroes per row) would not take advantage from the first unrolled
loop, because with less than three nonzeroes, the loop will not be entered, thus
resulting in a wasted comparison operation, and possible penalties due to the
repeated failed branch prediction. On the other hand, on a matrix with more
than three average nonzeroes per row (the most common case), the total number
of comparisons performed in the first inner loop can be reduced asymptotically
(in the number of the sparse row nonzeroes) by two thirds of the original. In the
listing, we have also used three different accumulator variables (y0, y1, y2): in
most programming languages, using a single accumulator variable three times
would introduce an undesired data dependency. Using three accumulators in-
stead allows the compiler to take advantage of possible low level parallelization
strategies (like vector extensions of existing or forthcoming CPUs) for their up-
date. Finally, as we have seen before, the use of accumulators allows us to update

the memory location for y(i) only once per row.
As an alternative to the inner loop unrolling, it would be possible to unroll

the external loop, but the extent of possible efficiency gain, here, would be
probably less.

Figure 1.22: SpMV listing for CSR, loop unrolled.
for i← 1 to m do1

y0 ← 0; y1 ← 0; y2 ← 0 l← 02

for l← PA(i) to PA(i+ 1)− 3 incrementing by 3 do3

j0 ← JA(l + 0)4

j1 ← JA(l + 1)5

j2 ← JA(l + 2)6

y0 ← y0 + VA(l + 0)x (j0)7

y1 ← y1 + VA(l + 1)x (j1)8

y2 ← y2 + VA(l + 2)x (j2)9

end10

for l← l to PA(i+ 1)− 1 do11

j ← JA(l)12

y0 ← y0 + VA(l)x (j)13

end14

y(i)← y(i) + y0 + y1 + y215

end16

As we see, just as with coordinate formats, detailed knowledge of the input
could come in help when thinking of an optimized execution for compressed
stripes-based formats, too.

1.2.3 SpSV for CSR/CSC

Triangular solution is the essential operation in the implementation of many
preconditioning techniques in the solution of linear systems. In that context, it
often happens that a matrix representing a triangle, as part of a factorization
of another matrix, has a unitary diagonal. We can take advantage of this, and
save a few bits of computation with an ad-hoc kernel code. We list pseudocode
for the solution of lower triangular systems in CSR with diagonal explicit and
implicit, respectively in Fig. 1.23 and Fig. 1.24.

The inner loop cycles on column indices, which for each given i, are strictly
less than it (we have a lower triangle). We notice that for the inner loop, x (i)

27

Figure 1.23: SpSV listing for CSR, diagonal explicit.
x (1)← y(1)/VA(1)1

for i← 2 to m do2

x (i)← 03

for l← PA(i) to PA(i+ 1)− 2 do4

j ← JA(l)5

x (i)← x (i) + VA(l)x (j)6

end7

x (i)← (y(i)− x (i))/VA(l)8

end9

Figure 1.24: SpSV listing for CSR, diagonal implicit.
x (1)← y(1)1

for i← 2 to m do2

x (i)← 03

for l← PA(i) to PA(i+ 1)− 1 do4

j ← JA(l)5

x (i)← x (i) + VA(l)x (j)6

end7

x (i)← (y(i)− x (i))8

end9

could be stored in a variable declared in the outer loop, and therefore likely
to be cached in some register by the compiler. If using explicitly a separate
accumulator variable in the loop and x (i) initialization, the algorithm could
work on a single vector y in place, with no additional penalty. We also observe
that if doing so, the y vector would have higher chances of cache reuse, given the
inner loop potential re-runs on the whole vectors. Reuse would be particularly
effective on matrices with a strongly triangular pattern (as opposed to a banded
pattern).

Figure 1.25: SpSV-T listing for CSR, diagonal explicit.
for i← m down to 1 do1

l← PA(i+ 1)− 12

y(i)← y(i)/VA(l)3

for l← PA(i+ 1)− 2 down to PA(i) do4

j ← JA(l)5

y(j)← y(j)−VA(l)y(i)6

end7

end8

In Fig. 1.25, we see a formulation of transposed SpSV for CSR. With some
abuse of notation, we mean both the loops to iterate on descending indices,
both ends inclusive. As we had with SpMV, here the inner loop is capable of
issuing nnz writes to unpredictable memory locations (that is, locations are
accessed indirectly), with a moderate degree of locality. Notice also that while
the external loop is required to cycle backwards, the inner one is not required to
do so; however, in this way we allow for some extra memory locality after the
diagonal element access (the first instruction in the external loop).

Some extra efficiency may be achieved for the SpSV kernels by unrolling the
inner loop. As it is the case with loop unrolling, it will be effective if the average
loop interval is relevant; namely, if many of the rows are populated more than
the unroll factor.

Notice also that in all of the diagonal explicit SpSV kernels we have pre-
sented, subarrays corresponding to rows (in CSR) or columns (in CSC) assume
that the last element is the one with the higher index; that is, the element on
the diagonal. The presented diagonal implicit SpSV kernels, instead, relax even
this constrain and allow unsorted subarrays.

29

A =

0.66667(1) 0.36656(2) 0.30011(3) 0.36656(4) 0.30011(5)

0.10004(9) 0.53341(8) −1(7) 0.20007(6) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(16) 0.10004(15) 0 0.28331(14) 0.18328(13)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

IAZZ−CSR=(1 6 10 13 17 21)
JAZZ−CSR=(1 2 3 4 5 4 3 2 1 1 3 5 5 4 2 1 1 3 4 5)
V AZZ−CSR=(0.66667 0.36656 0.30011 0.36656 0.30011 0.20007 -1 0.53341
0.10004 0.12219 0.5777 0.24437 0.18328 0.28331 0.10004 0.05002 0.06109 0.12219
0.15006 0.27224)

Figure 1.26: Zig-Zag CSR representation of matrix cage3*. Notice how the order
elements are laid out: at the end of each odd row, ordering proceeds by traversing
even rows backwards.

1.2.4 Two Variations: Zig-Zag CSR and BCSR

In this section, we show two variations of CSR documented in the literature.
The first one is a rather modest modification which enables the reuse of the
SpMV/SpMV-T algorithms (as presented in Fig. 1.16,1.18) unmodified, while
achieving greater cache reuse. The second one is a completely different format,
still based on the idea of compressing rows; to be precise, rows of small, dense
blocks. Although the ideas behind these two formats could be combined (they are
quite independent), we discuss them separately, to point out some interesting
facts.

The first modification to CSR is named Zig-Zag CSR, as introduced by Yzel-
man and Bisseling [YB09, § 5]. The rationale for Zig-Zag CSR is extremely sim-
ple: given the basic SpMV matrix sweep of CSR arrays (see Fig. 1.16), we notice
that towards the end of the first row (i = 1) traversal, right-hand side vector (y)
locations around column index j are likely to be cached. When stepping in the
inner loop on row i + 1 = 2, these cache lines, if unmodified, would have a big
chance for being used again. In practice, though, when proceeding with a new
row, it is likely that before an eventual reuse (towards the end of this new row),
cache lines of the preceding row may be evicted. The way Zig-Zag CSR may
enhance locality here is simple: by reversing the order of row 2 elements (that
is, JA and VA entries at locations [PA(2)...PA(3)− 1]), and elements of all even
rows 4, 6, .., any SpMV algorithm for CSR is likely to work with improved cache
locality of the y array. The pattern of access for VA and JA arrays would be the

same: monotonically ascending. Access to the right-hand side vector would be
unpredictable as usual, as mandated by the use of indices in JA; however, even
if alternating the direction of consecutive y requests (on each new row) may
trick the prefetch hardware, the chance of reuse is increased, since it is likely
to have in cache some locations of nearby indices of last used y entries. Matrix
cage3* in the Zig-Zag CSR layout is shown in Fig. 1.2.4. Notice also that the
SpSV algorithm for CSR could be adapted to Zig-Zag CSR with very modest
changes. The basic (and reasonable) assumption of Zig-Zag CSR is that if some
nonzero entry exists at ai,j , it is often the case that some other nonzero exists
at locations ai±1,j+∆, with ∆ a small integer (negative or positive) number.

The second “variant” of CSR we present, is called BCSR (Blocked CSR),
and is indeed very well documented in the literature, and used in many im-
plementations; prominently, it is the main format of the OSKI (see Vuduc et
al. [VDY05a]) package; see also the related research by Im and Vuduc, e.g.:
[Im00], [Vud03]. The BCSR format applies the same compression idea of CSR,
but to dense blocks of a fixed size, br × bc, rather than to individual nonzeroes.
With BCSR, the pointer array is of shorter length: rather than having m + 1
entries, it has dm/bre + 1 entries, pointing to block rows bi . Also the indices
array is shorter: instead of having one column index per nonzero, it has no less
than (see the following discussion) dnnz/(br · bc)e block column indices bj . The
routine for SpMV, here, is similar to that for CSR, but handles entire br × bc
block elements instead of individual entries. This ensures ready reuse of both
result and right-hand side vector arrays, as here the minimal update would not
be yi ← yi+ai,jxj , but rather (with some abuse of notation): ybi·br :bi·br+br−1 ←
ybi·br :bi·br+br−1 + abi·br :bi·br+br−1,bj ·bc:bj ·bc+bc−1xbj ·bc:bj ·bc+bc−1

12.
A consequence of this is that in order to apply a given choice of br × bc

(blocking) to a matrix, it may happen for some zeroes to fall under some dense
block. Think of an n × n matrix, whose upper half is populated by groups
of horizontally pairwise adjacent nonzeroes, while the lower half would have
all nonzeroes isolated. Clearly, a 1 × 2 blocking would be appropriate in the
representation of the upper half matrix. However, applying this blocking to
the lower half would require the allocation of blocks which would convey only
half useful numerical data (that is, effective nonzeroes). That is, the existence
of these extra, fill-in nonzeroes does not change the numerical results of most
computations, but introduces unnecessary operations and the need for a larger

12If we interpret the bi and bj indices as offsets in the unblocked matrix (rather than in block
coordinates), we allow unaligned blocks, and therefore have a different update: ybi:bi+br−1 ←
ybi:bi+br−1 + abi:bi+br−1,bj :bj+bc−1xbj :bj+bc−1. For more research about this variant (called
UBCSR), see Vuduc [Vud03, 5.1] or Buttari et al. [BELF07].

31

VA array.
For instance, with our (artificial) example matrix cage3* (recall Fig. 1.1),

there exists no blocking for BCSR that would prevent from storing all of its
zeroes as fill-in entries.

The potential performance benefits of BCSR are well documented; BCSR
may greatly speed up the SpMV. However, the needs for avoiding fill-in and
guessing a good blocking13 (or even split the matrix in multiple overlays with
differing blocking)14 is a substantial difficulty towards the optimal usage of
BCSR. The fact that some matrices do not even have a block structure at all,
further restricts BCSR from general applicability.

Given the presence of fill-in, we distinguish here raw performance from ef-
fective performance: the first one taking in consideration the rate at which any
floating point instructions are performed; the second one considering only the
number of floating point instructions which actually contribute to the numerical
result, i.e.: the count of instructions not involving the zeroes. See the works of
Buttari et al. ([BELF07]) and PhD thesis ([But06]) of Buttari for a methodology
for the modeling and optimization of BCSR performance. In this work we will
not discuss these techniques in further details.

1.3 Overview of Other Operations

So far, we have described and discussed with some detail possible implementa-
tions of the two core Sparse BLAS operations: SpMV and SpSV. Maximizing
the efficiency of these computational kernels is the primary problem we address
in our research. In a broader context, however, an audience of designers, imple-
mentors, or users of sparse matrix techniques may take in consideration also the
availability (and/or the efficiency) of algorithms for other operations.

The very first algorithm to be implemented for any given matrix layout
is the one for building (or assembling, in jargon) the matrix data structure
in memory. One or more routines for efficient matrix assembly is desirable: a
slow procedure would only be acceptable when undeniable benefits could be
achieved by subsequent high speed computations. For instance, if the matrix
is going to be used once, it may be the case that COO (that is, a mere list of
matrix nonzeroes) will be the proper representation, at least for the simplest

13Excessive fill-in resulting from a poor blocking choice may push effective performance too
low, since a lot of extra bogus operations summing zeroes would be performed.

14In general, finding an optimal tiling of a sparse matrix is a difficult problem; see Pinar
and Vassilevska in [PV05] or [VP04].

operations. Conversion algorithms/routines from and to the target format are
desirable; if two matrix formats require row major ordering, it is likely that
interchange between these formats will be efficient; conversely, it is also likely
that conversion between a row major-based and a column major-based format
will be less efficient.

Besides matrix instantiation algorithms and vector multiplication/solve, some
general purpose applications like interactive systems for numerical computations
(e.g.: GNU Octave or Matlab) prefer a data structure capable of several op-
erations. This, because such a package is generally unaware of the operations
that will be carried out on a sparse matrix at build time, unless explicit hints are
given by the user (and this is not currently contemplated in the two mentioned
packages).

Some high performance solver libraries, like PSBLAS, offer interfaces for
pluggable custom sparse matrix formats implementations. In the case of PS-
BLAS, a plugged format must contemplate much more operations than the two
Sparse BLAS operations mentioned above. We list and briefly discuss a num-
ber of operations a low-level sparse matrix package could support, and their
possible application contexts. Knowledge of what operation is possible/optimal
and what is not for a given sparse matrix technology exposes the limits and
potentials for its application in a given context.

• random (read/write) access of elements: Update of boundary con-
ditions in a time-based, evolving simulation.

• extraction of sorted sparse/dense subblocks (e.g.:rows/columns):
For instance, computing a preconditioner matrix 15, step by step16.

• modification of the sparsity pattern: Needed when the topology of a
simulated domain changes.

• pattern-only representation: For keeping connectivity information in
unweighted graphs.

• infinity/one norm computation: Also computable with a SpMV or
SpMV-T; used in iterative methods, for the convergence criteria.

• rows/columns scaling: For proper conditioning of a triangular matrix,
or many other algorithms.

15For a discussion about preconditioning techniques, see Saad [Saa03, Ch. 9-10,12].
16As the PSBLAS package does when handling “opaque” sparse matrix formats.

33

• incomplete, pattern preserving factorizations: Typically, precondi-
tioning during the iterative solution of a linear problem.

• incomplete, pattern altering factorizations: Typically, precondition-
ing during the iterative solution of a linear problem.

• complete (direct) factorizations: In the context of iterative solvers
they are typically employed on a reduced subproblem instance used in the
preconditioning of the original one.

• sum/difference of sparse matrices: When assembling a system of
equations.

• multiplication of sparse matrices: Sparse multiplications may also
arise in the context of building matrices to be used as multilevel precondi-
tioners; see the work of D’Ambra, Serafino and Filippone in the MLD2P4
and PSBLAS packages ([DdSF10, p.14]).

• matrix powers: For the acceleration of some iterative processes.

• symmetry handling: Symmetric matrices arise in many problems, and
a specialized handling allows saving memory and computation time (as
we recall from §1.2.2).

• matrix transposition: The need for an explicit transpose of a sparse
matrix may arise in some preconditioner implementations; see for instance
MLD2P4 (D’Ambra, Serafino and Filippone [DdSF10]).

• diagonal extraction: Diagonal-based preconditioning.

• matrices pattern intersection: Graph theoretic applications.

• any of the previous, with shared memory parallelism: For speeding
up computations.

• any of the previous, with distributed memory parallelism: For
speeding up computations, or handling problems exceeding the physical
memory available on a single computer.

Indeed, seldom most of these operations need to be implemented and (ab-
solutely) optimized in a carefully written, high performance code. However, we
would like to stress that what often happens with data structures is that while
some operations could be “natural” and “cheap” on one data structure, they
may be impractical and inefficient on another one.

1.4 Memory Access Patterns for Basic Sparse Ma-
trix Operations

In §1.1 and §1.2, we have presented two of the most common sparse matrix
layouts (coordinate list and compressed stripes), with pseudocode listings and
discussion about their possible optimization in practical implementations. In this
section, we summarize the discussion in those sections by means of Table 1.1
and some notation; we focus on the memory access patterns for a number of
format and operation combinations. We focus here on the operations which are
most relevant to the implementation of iterative solvers. The discussion in the
previous sections should be enough to justify all of the expressions present in
the table, even if the algorithm listing corresponding to a particular table entry
was not presented.

The effective number of floating point operations executed in a given op-
eration may vary slightly between the various formats implementations (and
also between different implementations of the same operation and format). For
instance, non-transposed, α-scaled SpMV (see the table) on row-major COR
allows arranging the code into using a hardware register for storing the current
y (result) vector entry, for the whole inner loop execution. Thus saving nnz−m
multiplications into iterating that inner loop, overall.

Such considerations, however, are not of our concern here: on the architec-
tures of our interest, most inefficiencies happen in the form of stalls (wasted
CPU cycles, caused by an excessive and unnecessary movement of data in the
memory hierarchy).

Therefore, in the table, we report only counts of memory writes (or stores)
and reads (loads). Most of the writes occurring here are accumulating : either
add or multiply-and-add operations; but we do not report the load operation
implied by such a store, for simplicity. In the table, we mark memory accesses
as being either sequential or random. Random accesses occur because the re-
ferred location address is computed using some indices, read from (pointer or
coordinate) arrays (which are accessed sequentially). In all of the cases we con-
sider, there are three arrays which are accessed once and sequentially (and thus,
thanks to prefetch, are likely to cause no cache miss excepts their first access):
the nonzeroes (matrix numerical coefficients) array, the nonzeroes column/row
indices array, and its row/column pointers array, in the compressed stripes for-
mats. A second attribute we give to groups of memory accesses regards the
chance of reuse of the locations which are cached during access17. So we count

17All of these assumptions hold because the architectures we consider have multi-way (or

35

separately accesses which are: one-shot, if no reuse is foreseen, and early cache
eviction—just after the write/read—would cause no miss; likely to fill cache
lines with data which would be reused soon—for instance, when non consecu-
tive, nearby18 locations are accessed; and finally, accesses pushing to the cache
data that it is very unlikely to be reused—for instance, when non consecutive,
quite afar locations are accessed.

In some cases (e.g.: the SpSV listing for CSR, in Fig. 1.25), certain arrays are
accessed proceeding backwards; this should not be a problem with the current
prefetch engines, so we did not mention this in the table.

In Table 1.2, we give, for each corresponding entry in Table 1.1, the ratio of
indirect to direct memory accesses. This second table could be obtained after a
different grouping and counting of the quantities in the first table.

Assumptions we make here about hardware prefetch do not hold if using
excessive stride in accessing arrays; that is, spacing adjacent vector entries with
a fixed number of array entries exceeding the so-called trigger threshold would
drive prefetch engines into failure. The consequence would be that all accesses
to the excessively strided vector would cause a cache miss.
Please consult §B for some experiments quantifying these considerations.

1.5 More Literature and Related Topics

1.5.1 Overview of Other Formats

Historically, a vast number of sparse matrix formats have been developed; some-
times to suit particular applications/algorithms; sometimes to pursue efficiency
on particular machines. In this subsection we mention some of them, as described
in Barrett et al. ([BBC+94, 4.3.1]).

• Compressed Diagonal Storage (CDS): CDS is a format which stores
supra and sub diagonals of a sparse matrix, also known as band. It is suit-
able for matrices used in iterative methods. In the case the band contains
zeroes in some of the diagonals, CDS could end up by storing them. De-
spite the name, it does not compress diagonals in the way CSR does with

group associative) caches, and support multiple streams of prefetched sequences. For instance,
most of recent Intel processors have up to eight prefetched streams, eight ways of cache
associativity, and a trigger threshold (maximal distance, in bytes, for regarding two temporally
close memory accesses as part of a stream, and thus activating the prefetch engine) of about
256 ([Int08a, § 2.4.2]).

18Falling into the same cache line, for instance.

o
p
e
r
a
ti
o
n

C
O
O

C
O
R

C
O
C

C
S
R

C
S
C

a
i
,j
←
κ

O
(n

)R
s
e

+
W
r
e

Θ
(l
g
2
(n

))
R
s
e

+
W
r
e

a
s
C
O
R

Θ
(γ

)R
s
e

+
W
r
e

a
s
C
S
R

d
←

D
(A

)
O

(n
)R
r
e

+
m
W
s
e

Θ
(m

)(
R
r
e

+
W
s
e
)

a
s
C
O
R

Θ
(m

)(
R
r
e

+
W
s
e
)

a
s
C
S
R

y
←
β
y

+
α
A
x

3
n
R
s
e

+
n
R
r
u

3
n
R
s
e

+
n
R
r
l

3
n
R
s
e

+
n
R
s
e

(2
n

+
m

)R
s
e

+
n
R
r
l

(2
n

+
k
)R
s
e

+
n
R
s
e

+
n
W
r
u

+
m
W
s
e

+
2
m
W
s
e

+
n
W
r
l

+
m
W
s
e

+
2
m
W
s
e

+
n
W
r
l

+
m
W
s
e

y
←

y
+
α
A
x

3
n
R
s
e

+
n
R
r
u

3
n
R
s
e

+
n
R
r
l

3
n
R
s
e

+
n
R
s
e

(2
n

+
m

)R
s
e

+
n
R
r
l

(2
n

+
k
)R
s
e

+
n
R
s
e

+
n
W
r
u

+
m
W
s
e

+
n
W
r
l

+
m
W
s
e

+
n
W
r
l

y
←

y
+
α
A
T
x

3
n
R
s
e

+
n
R
r
u

3
n
R
s
e

+
n
R
s
e

3
n
R
s
e

+
n
R
r
l

(2
n

+
m

)R
s
e

+
n
R
s
e

(2
n

+
k
)R
s
e

+
n
R
r
l

+
n
W
r
u

+
n
W
r
l

+
k
W
s
e

+
n
W
r
l

+
k
W
s
e

y
←

y
+
α
A
x

(
?
)

3
n
R
s
e

+
2
n
R
r
u

(3
n

+
m

)R
s
e

+
n
R
r
l

a
s
C
O
R

(2
n

+
2
m

)R
s
e

+
n
R
r
l

a
s
C
S
R

+
2
n
W
r
u

+
m
W
s
e

+
n
W
r
l

+
m
W
s
e

+
n
W
r
l

y
←
α
L
−

1
y

N
.A

.
3
n
R
s
e

+
n
R
r
l

3
n
R
s
e

+
n
R
s
e

(2
n

+
m

)R
s
e

+
n
R
r
l

(2
n

+
k
)R
s
e

+
n
R
s
e

+
m
W
s
e

+
n
W
r
l

+
m
W
s
e

+
n
W
r
l

y
←
α
L
−
T
y

N
.A

.
3
n
R
s
e

+
n
R
s
e

3
n
R
s
e

+
n
R
r
l

(2
n

+
k
)R
s
e

+
n
R
s
e

(2
n

+
m

)R
s
e

+
n
R
r
l

+
n
W
r
l

+
k
W
s
l

+
n
W
r
l

+
k
W
s
l

∀i
,
j
a
i
,j
←

x
i
a
i
,j

n
R
s
e

+
n
R
r
l

n
R
s
e

+
m
R
s
e

n
R
s
e

+
n
R
r
l

m
R
s
e

+
m
R
s
e

n
R
s
e

+
n
R
r
l

+
n
W
s
e

+
n
W
s
e

+
n
W
s
e

+
n
W
s
e

+
n
W
s
e

T
ab

le
1.

1:
O

v
er

v
ie

w
o
f

th
e

m
em

o
ry

a
cc

es
s

p
a
tt

er
n

s
fo

r
C

O
O

,
C

O
C

,
C

O
R

,
C

S
R

,
C

S
C

.
A

ss
u

m
p

ti
o
n

s:
th

e
m

a
tr

ix
d

ia
g
o
n

a
l

(D
(A

))
is

a
lw

a
y
s

ex
p

li
ci

tl
y

st
o
re

d
;

ei
th

er
ro

w
s

o
r

co
lu

m
n

a
re

o
rd

er
ed

a
sc

en
d

in
g
ly

(e
x
ce

p
t

C
O

O
,

o
f

co
u

rs
e)

;
th

e
u

p
d

a
te

o
p

er
a
ti

o
n
a
i,
j
←
κ

a
ss

u
m

es
th

a
t
a
i,
j

is
a

st
o
re

d
n

o
n

ze
ro

;
ei

th
er

d
ia

g
o
n

a
l

ex
tr

a
ct

io
n

o
r

th
e

u
p

d
a
te

o
p

er
a
ti

o
n

im
p

ly
a

b
in

a
ry

se
a
rc

h
in

C
O

R
/
C

O
C

/
C

S
R

/
C

S
C

;
S

p
M

V
fo

r
C

O
O

a
s

sh
o
w

n
in

F
ig

.
1
.5

;
S

p
M

V
-T

fo
r

C
O

O
a
s

in
F

ig
.

1
.6

;
S

p
M

V
fo

r
C

O
R

a
s

in
F

ig
.

1
.8

;
sy

m
m

et
ri

c
S

p
M

V
fo

r
C

O
O

a
s

in
F

ig
.

1
.1

1
;

S
p

M
V

-T
fo

r
C

O
R

a
s

in
F

ig
.

1
.9

;
S

p
M

V
fo

r
C

S
R

a
s

in
F

ig
.

1
.1

6
;

S
p

M
V

fo
r

C
S

C
a
s

in
F

ig
.

1
.1

7
;

S
p

M
V

-T
fo

r
C

S
R

a
s

in
F

ig
.

1
.1

8
;

S
p

M
V

-T
fo

r
C

S
C

a
s

in
F

ig
.

1
.1

9
;

S
p

S
V

is
a
ss

u
m

ed
to

u
se

a
si

n
g
le

in
p

u
t/

o
u

tp
u

t
v
ec

to
r;

fo
r

a
ll

o
p

er
a
ti

o
n

s,
w

e
a
ss

u
m

e
u

n
it

a
ry

v
ec

to
rs

st
ri

d
e.

T
o

a
v
o
id

co
m

p
li
ca

ti
n

g
th

e
a
b

o
v
e

ex
p
re

ss
io

n
s,

w
e

a
ss

u
m

e
th

a
t:

fo
r

C
S

R
/
C

O
R

,
n

n
z
>

m
a
n

d
n

o
em

p
ty

ro
w

ex
is

ts
;

fo
r

C
S

C
/
C

O
C

,
n

n
z
>

k
a
n

d
n

o
em

p
ty

co
lu

m
n

ex
is

ts
.

W
it

h
so

m
e

a
b

u
se

o
f

n
o
ta

ti
o
n

,
w

it
h
O

(n
)

w
e

d
en

o
te

a
q
u

a
n
ti

ty
w

h
ic

h
o
n

th
e

a
v
er

a
g
e

is
n

;
w

it
h

Θ
(n

)
w

e
d

en
o
te

a
q
u

a
n
ti

ty
w

h
ic

h
is
n

in
th

e
w

o
rs

t
ca

se
.

L
e
g
e
n

d
O

a
r
:

a
re

a
d

(l
o
a
d

)
o
p

er
a
ti

o
n

if
O

is
R

,
a

w
ri

te
(s

to
re

)
o
p

er
a
ti

o
n

if
O

is
W

;
a
cc

es
se

d
se

q
u

en
ti

a
ll
y

if
a

is
s,

ra
n

d
o
m

ly
(b

y
m

ea
n

s
o
f

in
d

ir
ec

ti
o
n

)
if
a

is
r
;

w
it

h
li
k
el

y
(t

em
p

o
ra

ll
y
)

el
em

en
t

re
u

se
if
r

is
l,

u
n

li
k
el

y
(t

em
p

o
ra

ll
y
)

el
em

en
t

re
u

se
if
r

is
u

,
n

o
re

u
se

a
t

a
ll

if
r

is
e

m
:

m
a
tr

ix
ro

w
s

k:
m

a
tr

ix
co

lu
m

n
s

n
:

sh
o
rt

fo
r

n
n

z
(m

a
tr

ix
n

o
n

ze
ro

es
)

γ
:

n
n

z/
m

if
C

O
R

o
r

C
S

R
;

n
n

z/
k

o
th

er
w

is
e

N
.A

.:
N

o
t

A
p

p
li
ca

b
le

(O
(n

2
)

co
m

p
le

x
it

y
im

p
li
ed

)
?
:

sy
m

m
et

ri
c

m
a
tr

ix
(o

n
ly

lo
w

er
re

p
re

se
n
ta

ti
o
n

,
b

u
t

co
m

p
u

ti
n

g
th

e
u

p
p

er
tr

ia
n

g
le

co
n
tr

ib
u

ti
o
n

a
ls

o
);

fr
o
m

th
e

o
v
er

a
ll

w
ri

te
s

co
u

n
t,

sh
o
u

ld
su

b
tr

a
ct

th
e

co
u

n
t

o
f

el
em

en
ts

o
n

th
e

d
ia

g
o
n

a
l;

m
=

k
is

im
p

li
ed

37

operation COO COR COC CSR CSC
ai,j ← κ 0

O(n)
0

Θ(lg2(n))
as COR 0

Θ(γ)
as CSR

d← D(A)
O(n)
m

Θ(m)
Θ(m)

as COR
Θ(m)
Θ(m)

as CSR

y ← βy + αAx 2n
3n+m

n
3n+2m

n
4n+m

n
2n+3m

n
3n+k+m

y ← y + αAx 2n
3n

n
3n+m

n
4n

n
2n+2m

n
3n+k

y ← y + αAT x 2n
3n

n
4n

n
3n+k

n
3n+m

n
2n+2k

y ← y + αAx (?) 4n
3n

2n
3n+2m as COR 2n

2n+3m as CSR

y ← αL−1y N.A. n
3n+m

n
4n

n
2n+2m

n
3n+2k

y ← αL−T y N.A. n
4n

n
3n+k

n
3n+k

n
2n+2k

∀i, j ai,j ← xiai,j
n
2n

0
2n

n
2n

0
n+2m

n
2n

Table 1.2: Overview of the amount of indirect memory accesses. Each entry in the table
gives a ratio of indirect memory accesses to direct memory accesses. We regard a memory
access as indirect when its location address was computed using an index which was either
loaded or computed from some other array. Namely, the count of indirect accesses for an
operation, comprehends the sum of both read (R) an write (W) accesses marked as random
(r) in Table 1.1. With an analogy, the count of direct accesses for an operation, comprehends
the sum of both read (R) an write (W) accesses marked as sequential (s) in that table.
Legend
?: symmetric matrix (only lower representation); to be more precise, from the overall writes
count, one should subtract the count of elements on the diagonal; m = k is implied
All the remaining assumptions made in Table 1.1 hold here as well.

rows; namely, it is capable of merging more than one incomplete diagonal
stripe in one, if possible. It was developed for vector processors.

• ITPACK Storage (ITP): ITP stores compressed columns, but giving
each compressed stripe the same length by means of padding with zeroes.

• Jagged Diagonal Storage (JDS): JDS (also known as JAD) represents
the (compressed) diagonals occurring in the matrix obtained by sorting
the CSR index arrays according to their population. JDS is a format
particularly suitable for vector machines. See Tiyyagura et al. ([TKB06]),
or Mills et al. ([MDF]) for developments on recent architectures.

• Skyline Storage (SKS): Also called variable band storage, it uses a row
pointer array, but keeps nonzeroes in dense subvectors, without storing
column indices, since they can be inferred by visiting the band. This for-
mat allows the efficient execution of some direct solution methods, as the
Gaussian elimination for instance.

As we see, these formats differ substantially from the COO/CSR variants we
have described so far. Indeed, in this thesis we will develop techniques based

on the CSR/COO formats. However, extending the short study made in §1.4
to these formats and related algorithms may lead to interesting developments
(see §6.3).

1.5.2 Considerations and Literature Pointers

In the algorithms presented in the preceding sections, we often made some as-
sumptions: the rows are sorted in ascending order, no duplicate elements occur,
and so on. Common variations which occur in the Sparse BLAS specifica-
tion involve: all combinations of untransposed/transposed/hermitian, symmet-
ric/unsymmetric, four BLAS numerical types (either single or double precision
real or complex floating point numbers), arbitrary vectors stride, diagonal im-
plicit/explicit storages. It is clear that an attempt into handling all of these cases
in a correct and optimized way is a daunting task. A possible way to overcome
the correctness, maintainability, and others difficulties (to say, coherent source
documentation and automated testing also), would be to model some specifica-
tion of an optimal source code and generate it automatically. Different aspects
of these considerations have been studied and reported in past research efforts.
The Sparsity ([IYV04b]) framework by Im, Yelick, Vuduc employs code gener-
ation techniques for creating source code for BCSR and CB (see §2.1), among
other formats. With the OSKI (Optimized Sparse Kernels Interface) library,
Vuduc uses automatically generated kernels and employs heuristic search tech-
niques for inferring the best BCSR blocking and matrix splitting19(see Vuduc
et al. [VDY05b]). Initially motivated by research in compilers, Bik and Wi-
jshoff have created a source-to-source code translator, or sparse matrix com-
piler, named MT1. Initially, MT1 dealt with the problem of hiding a sparse
semantics behind a dense syntax; that is, the user is required to specify his
matrix algorithms in Fortran, with a number of annotations in the comments
(see [BBW97], [BW96]). The compiler’s role, in MT1, is that of interpreting
both the user’s annotations and the (coded as) dense algorithm specification,
and producing appropriate declarations and code reformulated as sparse. In
further research, Bik et al. focused on the generation of primitives for sparse
operations (see [BBKW98]), discussing the code generated by their compiler
for matrix-vector product, triangular solve, matrix-matrix product, triangular
multi-vector-solve. One of their conclusions was that the higher level the annota-

19That is, representing a matrix as the sum of matrices which are disjoint by sparsity pattern
(namely, each given effective nonzero at (i, j) is represented in exactly one of the “summand”
matrices), and have differently blocked representations, rather than a single rows/columns
partitioning.

39

tions/specifications are, the higher the chances for an appropriate optimization
of the whole transformation. We believe that the best approach into producing
a high performance and maintainable Sparse BLAS library is that of using all
of these techniques. With a cautious approach, and to a limited extent, we have
applied the knowledge gained from research efforts we have cited into producing
a matrix format of our own, as the following chapters will describe.

2
Hierarchical Representations of Sparse

Matrices

Overview

By hierarchical representation we mean a representation of sparse matrices of-
fering multiple levels of addressability; for instance, organizing a matrix in sub-
matrices, by means of some additional data structure on the top of them.

Generally, we distinguish flat, two-level representations, based on a single,
two dimensional blocking of the matrix, from multi-level, (possibly recursive)
representations. A recursive, two-dimensional partitioning of a matrix would
allow the addressing of submatrices data at various levels. In this chapter, we
will describe three sparse matrix formats, covering the mentioned combinations
of flat and recursive layouts.

The first documented hierarchical representations of matrices date back to
the early history of information technology. A motivation for the development
of these techniques was to optimize the complexity of input/output with ex-
ternal storage; over the years, with different, evolving technologies. As a first
thing, hierarchical representations enabled out of core computations; that is,
computations on datasets exceeding the amount of available physical memory.
This was an especially valued feature, given the more limited amount of mem-
ory computer users had in the past. For instance, back in 1969, McKellar and
Coffman ([MC69]) considered dense matrix computations on paged memory sys-

41

tems. They considered three ways of storage: by rows, row blocks, recursive1.
Since their problems involved the arrangement of submatrices in memory pages,
their considerations focused on the problem of maximizing mean page residence
time, also in view of the extra storage needed to adapt to the page size. The
algorithms they proposed address operations of addition, multiplication, trans-
position, and inversion of dense matrices. They also assumed the applicability
of the so-called Belady’s algorithm(See Belady [Bel66]), which assumes the pro-
gram is both able and allowed to control the memory pages replacement policy2.

Subsequently, hypermatrix (multilevel indexing based) techniques have been
applied for the solution of linear systems. In 1972, von Fuchs et al. (see [vFRS72])
report the use of such techniques for Cholesky factorization of sparse structural
stiffness matrices. However, representation of individual submatrices during fac-
torization is still dense.

Curiously, notable software packages developed for iterative methods in the
1980’s and early 1990’s neglected the use of hierarchical/recursive representa-
tions of sparse matrices (see some of Vuduc’s bibliographical material in [Vud03,
§ 2.3]). With the re-emergence of shared memory parallelism and higher impact
of memory access latency3, since the first 2000’s, hierarchical representations
of sparse matrices have been used more and more for factorizations: see the
works of Irony et al. on Cholesky factorization in [IST04], Dongarra et al. on
LU factorization ([DEL01]), and again on Cholesky factorization with the works
of Herrero and Navarro ([HN08]).

On the other hand, in the field of (distributed memory) parallel computing,
data partitioning was used extensively. For recent work, see [VB05], where Vas-
tenhouw et al. use asymmetrical recursive bipartitioning of sparse matrices in
a distributed computing context. Sparse hypermatrix techniques were also re-
portedly used for distributed-memory operations in the PERMAS proprietary
package for FEM analysis (Fischer et al. [FALM]). The topic of the optimal bal-
ancing of sparse matrix computations across distributed processors was often
considered; for instance, see Pinar and Aykanat in [PA97].

1In their paper, respectively named row storage, packed rows storage, and submatrix stor-
age.

2An assumption which holds for many modern architectures, especially ones using scratch-
pad memories: small and fast (compared to main RAM) memory areas under the program-
mer’s control, with programmable transfers from the RAM. Also cache control instructions
present on modern processors allow, to a limited extent,Belady’s assumption (see [AMD07,
§3.9.6],[Int08a, Ch. 7]).

3Over the years, memory access latency has been improving relatively much less than CPU
processing speed (in terms of Millions of Instructions for Second (MIPS)); see Patterson and
Hennessy [PH04, § 1.4,Fig. 7.37].

While the interest in hierarchical representations for sparse matrix compu-
tations has been quite modest, research about the use of hierarchical represen-
tations of point or black/white image data has been very widely studied.

Research on the application of the quad-tree structure (introduced by Finkel
and Bentley, see [FB74]) has been extensive, especially in computer graphics;
see for instance the works of Samet ([Sam84], or [Sam06, § 2.1.2.4]).

In the following sections, we will first introduce two recent, hierarchical
sparse matrix layouts conceived primarily for SpMV. These are the Cache Block-
ing format (CB), in §2.1, and the Compressed Sparse Blocks format (CSB), in
§2.2.

Then, in §2.3, we will proceed with the exposition of Recursive CSR, (RCSR),
a quad-tree-based hierarchical layout for sparse matrices designed and imple-
mented by us. This matrix layout develops ideas and techniques present in the
mentioned literature, as well as in CB and CSB. The rest of the thesis is devoted
to this sparse matrix format and related algorithms.

2.1 CB: Cache Blocking

Introduced in this context by Im and Yelick in [IY99], also described in [Im00,
Ch. 4], the term Cache Blocking refers to techniques for performing optimized
SpMV computations on individual blocks of a sparse matrix, sized in a way that
the working set fits in (some level of) cache memory. With CB, at any given
time, only elements in some specified rcache × ccache-sized submatrix could be
referenced.

Authors of CB distinguish between techniques for static and dynamic cache
blocking. While static cache blocking specifies both a data structure and a SpMV
algorithm, dynamic CB refers only to a particular arrangement of code to pro-
cess the rcache × ccache-sized sparse submatrices, one at a time, by keeping the
whole matrix stored as CSR. Now on, with CB, we will refer to static cache
blocking only, as described in [Im00, Ch. 4].

This format is hierarchical, for there is an array whose entries point to indi-
vidual block rows, represented as CSR sub-arrays enclosed in three arrays.

Please see Fig. 2.1 for an instance of CB of an example matrix.
CB has been originally developed for the Sparsity code package (see Im et

al. [IYV04b]); later on, it has been implemented in the Sparsity-based OSKI
sparse kernels library by Vuduc (see [VDY05b]).

By effectively storing small sparse blocks, one increases locality into accessing
the x and y vectors during SpMV, although at the cost of a slightly higher

43

A =

(

0.66667(1) 0.36656(2) 0.30011(3)

0.10004(4) 0.53341(5) −1(6)

) (
0.36656(7) 0.30011(8)

0.20007(9) 0

)
(

0.12219(10) 0 0.5777(11)

0.05002(12) 0.10004(13) 0

) (
0 0.24437(14)

0.28331(15) 0.18328(16)

)
(
0.06109(17) 0 0.12219(18)

) (
0.15006(19) 0.27224(20)

)

IACB=(1 4 7 9 10 12 14 15 17 19 19 21)
JACB=(1 2 3 1 2 3 4 5 4 1 3 1 2 5 4 5 1 3 4 5)
V ACB=(0.66667 0.36656 0.30011 0.10004 0.53341 -1 0.36656 0.30011 0.20007
0.12219 0.5777 0.05002 0.10004 0.24437 0.28331 0.18328 0.06109 0.12219 0.15006
0.27224)
BPCB=(1 7 10 14 17 19)

Figure 2.1: Cache Blocked representation of matrix cage3* (with rcache =
2, ccache = 3). The individual sparse blocks are marked by parentheses. We
have trimmed the blocks on the right and lower sides to not exceed the overall
matrix dimensions: for this reason these blocks are dimensioned less than 2× 3.
We have named the arrays with a notation of our convenience.

indexing overhead. Contrarily to BCSR (see §1.2.4), no nonzeroes are stored
explicitly, in any case.

The feature of cache blocking CB introduces for sparse matrices storage, will
serve as a basis for the CSB format, presented in the following section.

2.2 CSB: Compressed Sparse Blocks

CSB (See Buluç et al. [BFF+09]) is a format introduced by Buluç et al. with the
aim of enabling a scalable parallel execution of both SpMV and SpMV-T. The
original paper about CSB describes an implementation relying on the CILK
(see Blumofe et al. [BJK+95]) system as a scheduler for supporting its shared
memory parallel execution.

Given a square matrix A, sized4 n× n, and given a parameter β, CSB par-
titions A as:

4Non square dimensions are supported as well, at the condition of keeping square sparse
blocks (see [BFF+09, § 3]).

Figure 2.2: Z-sorted coordinates for 5x5,6x6,7x7,9x9 sized dense matrices. The
line follows the order of the coordinates, beginning at the top left. Please notice
both the imbalance regarding the matrix original dimensions, and the existing
rows/columns symmetry.

A =

0.66667(1) 0.36656(2) 0.30011(5) 0.36656(6) 0.30011(14)

0.10004(3) 0.53341(4) −1(7) 0.20007(8) 0

0.12219(9) 0 0.5777(12) 0 0.24437(15)

0.05002(10) 0.10004(11) 0 0.28331(13) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

IA=(1 1 2 2 1 1 2 2 3 4 4 3 4 1 3 4 5 5 5 5)
JA=(1 2 1 2 3 4 3 4 1 1 2 3 4 5 5 5 1 3 4 5)
V A=(0.66667 0.36656 0.10004 0.53341 0.30011 0.36656 -1 0.20007 0.12219
0.05002 0.10004 0.5777 0.28331 0.30011 0.24437 0.18328 0.06109 0.12219 0.15006
0.27224)

Figure 2.3: Z-Morton ordered COO representation of matrix cage3*.

A =

A00 A01 . . . A0,n/β−1

A10 A11 . . . A1,n/β−1

...
...

. . .
...

An/β−1,0 An/β−1,1 . . . An/β−1,n/β−1

 �� ��2.1

Nonzeroes from each block are stored contiguously, thus making CSB a par-
ticular form of cache blocking. Within, each block is stored using the three arrays
of COO (recall §1.1), Morton-ordered. See Fig. 2.2 for a visual representation of
Z-Morton ordering for some small matrix, and Fig. 2.3 for our example matrix
stored in Z-Morton ordered COO. This ordering of nonzeroes within blocks en-

45

sures the same cache behaviour (statistically, in terms of cache misses) for the
matrix, right-hand side, and result arrays accesses, regardless of the execution
of either SpMV or SpMV-T. A simple explanation for the non-bias comes from
observing that without any assumption on the nonzeroes distribution, when
sweeping the block coordinates, transitions changing row index have the same
probability of transitions changing column index. A side effect of such dynamics
is a possible lesser hit rate of the prefetch engines when guessing new x and y
addresses, of course.

Since blocks are sparse, and many of them are possibly empty (think of
a banded matrix), a block pointers array is used to store the offset of each
sparse block within the global COO arrays. The block pointers array has (n/β) ·
(n/β) = n2/β2 integer elements; one per block, whether empty or not. Therefore,
random access to the memory location of a particular coordinate requires, first,
a lookup in this array, and then, if the block is non-empty, a search in the
sparse block indices arrays. Among themselves, blocks are stored row-major,
thus breaking the row/column symmetry blocks have within their contained
coordinates, therefore limiting the cache obliviousness of CSB to the individual
blocks. Authors of [BFF+09] report this as not being a source of difference
between the transposed and untransposed SpMV performance, in practice.

Fig. 2.4 shows a CSB instance of matrix cage3*; that is, the two arrays with
the row and column indices, the array with the numerical values, and the block
pointers array.

Since within a sparse block, the row and column offsets are known, there
is no need to store indices as global : it is sufficient for them to be local to the
block submatrix, instead. This means that in practice, only indices in the [1...β]
range occur, and an implementation could use less bits than it would necessary
to store values in the [1...n] range. A side effect of this, is that by using an index
type shorter than the usual; for instance, 16 bits integers instead 32 bit ones5,
storage required for COO indices may be less than that needed by COO or CSR
formats.

Authors of CSB report some limitations of this format, at the point of their
current implementation. One is the missing support for specialized, symmetric
updates when multiplying symmetric matrices; this technique is usually ex-
ploited to attain a nearly double write-to-read rate; see the case for CSR in
§1.2.2. Other open questions pertain to the existence of efficient algorithms for
matrix factorization, triangular solve, or factorizations for CSB ; formulations
for CSR/CSC exist and are well known.

5This has been the authors choice in their CSB prototypal code distribution.

A =

(

0.66667(1) 0.36656(2)

0.10004(3) 0.53341(4)

) (
0.30011(5) 0.36656(6)

−1(7) 0.20007(8)

) (
0.30011(9)

0

)
(

0.12219(10) 0

0.05002(11) 0.10004(12)

) (
0.5777(13) 0

0 0.28331(14)

) (
0.24437(15)

0.18328(16)

)
(
0.06109(17) 0

) (
0.12219(18) 0.15006(19)

) (
0.27224(20)

)

IACSB=(2 2 1 1 2 2 1 1 2 2 1 1 2 1 2 1 2 2 2 2)
JACSB=(2 1 2 1 2 1 2 1 2 2 2 1 2 1 2 2 2 2 1 2)
V ACSB=(0.66667 0.36656 0.10004 0.53341 0.30011 0.36656 -1 0.20007 0.30011
0.12219 0.05002 0.10004 0.5777 0.28331 0.24437 0.18328 0.06109 0.12219 0.15006
0.27224)
BPCSB=(1 5 9 10 13 15 17 18 20)

Figure 2.4: CSB -ordered representation of matrix cage3*(with β = 2). Note that
the CSB paper does not specify how to handle the case when n is not divided
by β, (as in the case of cage3*). Probably, the most reasonable solution would
be that of handling peripheral blocks separately, as a corner case.

2.3 RCSR: A Recursive Layout

In §2.1 and §2.2, we have introduced layouts partitioning matrices in a cache-
friendly manner. In this section, we propose a layout based on a recursive
quad-partitioning of sparse matrices. This format, besides offering a form of
cache blocking, is capable of supporting the various Sparse BLAS (Duff et
al. [DHP02]) matrix variants; that is, diagonal implicit and/or symmetric rep-
resentations, and both multiplication and triangular solve operations. In the
following chapters, we will develop and tune thread-level parallel algorithms for
these operations.

We label this format (perhaps improperly) RCSR: Recursive CSR.
Given a matrix A, we define its RCSR representation in memory as the

quad-tree (see Finkel and Bentley [FB74]) QA, having:

• as root, the whole matrix A

• as leaves, submatrices of A, represented with CSR arrays

• as intermediate nodes, the quadrant submatrices of A, and the subma-
trices resulting from their recursive subdivision in quadrants

With recursive subdivision in quadrants, or recursive quad-subdivision of ma-
trix A, sized m×k, we mean the quadrants A11, A12, A21, A22, sized respectively

47

(in clockwise order, from the upper left) dm2 e× d
k
2e, d

m
2 e× b

k
2c, b

m
2 c× d

k
2e, and

bm2 c × b
k
2c.

That is, for A:

A =

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ �� ��2.2

Subdivision could proceed in any of the quadrant submatrices.
If subdivision results in some submatrix with no nonzero element, at some

level, that submatrix is not subdivided further. Therefore we do not represent
empty submatrices in RCSR. Each submatrix node contains information about
the rows and columns range within the matrix, as well as the enclosed nonze-
roes; thus a square zeroes-only region may be identified by exclusion, as its cor-
responding pointer is missing, but its extent is known, given the above stated
subdivision rule for submatrices.

According to the above definition, no two leaf submatrices (s, s
′
) of a given

matrix may overlap.
In the case A is square, we have that:

• each submatrix intersecting the diagonal is also aligned to it

• each submatrix intersecting the diagonal is square

See Fig. 2.5 for an example of quad-tree partitioning a matrix.
The following subsections show the basic way for implementing the BLAS-

oriented operations SpMV and SpSV when the matrix is partitioned recursively
with RCSR. Note that the actual leaf submatrices format is irrelevant to the
proposed operations breakdown. After giving more details about our implemen-
tation of the RCSR layout in the following sections, in §2.4 we will report some
experiments comparing both RCSR and RCSC layouts performance to that of
other software/formats.

2.3.1 SpMV for a Recursive Subdivision Layout

Considering the basic decomposition in four quadrants of matrix A, multiplica-
tion by a vector x (“y ← y + A x”)6 could be formulated in the following
way.

Ax =

∣∣∣∣A11 A12

A21 A22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣ =

∣∣∣∣A11 A12

0 0

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣+

∣∣∣∣ 0 0
A21 A22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣
6The same breakdown would hold for any other dense matrix x , of course.

36057x36057
@0,0

:227628(*)

18029x18029
@0,0

:112408(*)

18029x18028
@0,18029
:1140(CSR)

18028x18029
@18029,0
:1446(CSR)

18028x18028
@18029,18029
:112634(*)

9015x9015
@0,0

:55071(CSR)

9015x9014
@0,9015
:920(CSR)

9014x9015
@9015,0
:1338(CSR)

9014x9014
@9015,9015
:55079(CSR)

9014x9014
@18029,18029
:54686(CSR)

9014x9014
@18029,27043
:1180(CSR)

9014x9014
@27043,18029
:1597(CSR)

9014x9014
@27043,27043
:55171(CSR)

Figure 2.5: Quad-tree partitioning for matrix onetone, on machine M6. Labels
at each submatrix node report: dimensions, 0-based location offset in the matrix,
number of the nonzeroes enclosed in that submatrix, and format, in the case of
leaves.

49

=

∣∣∣∣A11x1 +A12x2

0

∣∣∣∣+

∣∣∣∣ 0
A21x1 +A22x2

∣∣∣∣ �� ��2.3

Because of the recursive matrix layout, the above computation breakdown
is valid on any other submatrix of A and corresponding subvector of x.

For the transposed case (“y ← y + AT x”) we have:

ATx =

∣∣∣∣A11 A12

A21 A22

∣∣∣∣T ∣∣∣∣x1

x2

∣∣∣∣ =

∣∣∣∣AT11 AT21

AT12 AT22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣ =

∣∣∣∣AT11 AT21

0 0

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣+ ∣∣∣∣ 0 0
AT12 AT22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣
=

∣∣∣∣AT11x1 +AT21x2

0

∣∣∣∣+

∣∣∣∣ 0
AT12x1 +AT22x2

∣∣∣∣
Note that when computing AT21x2 and AT21x2, in order to write to the appro-
priate destination subvector, also the submatrix position should be taken into
account. Therefore, the SpMV/SpMV-T algorithms in Fig. 1.16/Fig. 1.18 should
be slightly modified for this purpose.

Let us consider now a symmetric representation of matrix A, storing only
A’s (non strictly) lower triangle L. In this case, a specialized kernel to compute
simultaneously y1 ← y1+LT21x2 and y2 ← y2+L21x1 could still be used, in a way
to avoid storing (or visiting) twice the L21 submatrix. However, the traditional
CSR kernel (as listed in Fig. 1.20) needs some modification, in order to accom-
modate the appropriate destination subvector offset, and to act consequently
whether the given submatrix straddles or not the main diagonal of A (think
of the diagonal as a vector D). In the case the submatrix straddles D, as with
L11 or L22, the symmetric SpMV kernel should compute both the transposed
and untransposed contributions, but taking into account multiplying diagonal
elements (that is, elements in D) only once. In the case the submatrix does
not cross D, as with L21, the symmetric SpMV kernel should compute both the
transposed and untransposed contributions, without having to skip the diagonal
elements.

Ax =

∣∣∣∣L11 LT21

L21 L22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣ =

∣∣∣∣L11 LT21

0 0

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣+

∣∣∣∣ 0 0
L21 L22

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣
=

∣∣∣∣L11x1 + LT21x2

0

∣∣∣∣+

∣∣∣∣ 0
L21x1 + L22x2

∣∣∣∣
The proposed solutions of computation breakdown are valid recursively, in

that they are valid on each recursive submatrix and subvector, given an im-
plementation appropriately handling on-diagonal submatrices and submatrix
positions.

In the most general formulation of SpMV (“y ← β y + α A x”), scaling
of the result vector should be handled separately (actually, before) the outlined
schema.

2.3.2 SpSV for a Recursive Subdivision Layout

When matrix A is lower triangular (A = L); that is, when i < j ⇒ aij = 0, the
solution x of a triangular system Lx = b with a recursive subdivision layout
could be computed according to the following equations7, or equivalently, with
the procedure in Fig. 2.6.

Lx = b⇒
∣∣∣∣L1 0
M L2

∣∣∣∣ ∣∣∣∣x1

x2

∣∣∣∣ =

∣∣∣∣b1b2
∣∣∣∣ �� ��2.4

x =

∣∣∣∣x1

x2

∣∣∣∣ = L−1b =

∣∣∣∣L1 0
M L2

∣∣∣∣−1 ∣∣∣∣b1b2
∣∣∣∣ =

∣∣∣∣ L−1
1 b1

L−1
2 (b2 −Mx1)

∣∣∣∣ �� ��2.5

This decomposition leads us to the following steps:

Figure 2.6: Recursive Blocked Triangular Solve operation breakdown.
Solve L1x1 = b1 for x1 (SpSV)1

Compute b2 −Mx1 (SpMV)2

Solve L2x2 = (b2 −Mx1) to find x2 (SpSV)3

When encountering a leaf submatrix on the diagonal, a traditional SpSV
kernel (as that in Fig. 1.23) should be used, instead of the recursive wrapper.
Multiplication of the M submatrix (and its quadrants, recursively) by x1 follows
the recursive rules presented in §2.3.1.

In the case a scaled (x = αL−1b) or a transposed (x = αL−T b) solution
should be computed, some trivial modifications should be made to the above
schema.

2.3.3 Sorting for Recursive Partitioning

Having outlined algorithms for performing SpMV and SpSV on this irregular
blocking we propose, in this section we sketch a basic algorithm for building such

7Recall, from §2.3, that submatrices on the diagonal are square, and thus correct as input
to a common triangular solve kernel.

51

matrices. The purpose of the algorithm at hand is to obtain in output a matrix
instance in the RCSR layout, after having processed input arrays specified as
unsorted COO (recall §1.1). Please notice that unsorted COO is the most general
input an application could handle, and is especially common when using higher
level scripting languages.

As a first thing, we define a criteria for ordering the input coordinate ele-
ments in an appropriate, recursive way. Then, we will explain how to proceed
using this ordering for recursive partitioning.

We present here a variant of Z-ordering we will use to sort all input nonzeroes
according to.

Let x, y ∈ N, be the Cartesian coordinates of a point in N2, and T be a
function T : (x, y) ∈ N2 → z ∈ N. Then, we can define the T -permutation
ΠT of a vector V = 〈(i0, j0), (i1, j1), ..., (innz, jnnz)〉 as the vector (assuming
no duplicates in V) ΠT (V) = 〈π0, π1, ..., πnnz〉 such that π0<π1<...<πnnz and
πl<πk hold whenever T (iπl , jπl)<T (iπk , jπk). Given i ∈ N, we define (adopting

the notation of Raman et al. in [RW08, section 2]) the 2-dilation of i,
→
i (“i

dilated”) as the result of interleaving a 0 bit between each meaningful bit in the
binary representation of i. So, if i = 28− 1 = 111111112 = FF16, its 2-dilation is
→
i= 0101010101010101 = 555516. Similarly we define

←
i
def
= 2

→
i , which is the left-

shifted 2-dilation of i. Let us now define the mapping Z as: Z(i, j)
def
=
→
j +

←
i .

Above, if we take T to be Z and apply element-wise to the coordinate vector
V , then we induce a Z-order on V . In Fig. 2.8 we depict the resulting ordering
of elements for some small dense matrices. Experiments reported by Lorton
and Wise ([LW07]) show that performing linear algebra on Z(Morton) sorted
elements could reduce page faults for large dense matrices. We conjecture this
to be true for sparse matrices too, as the sparseness of elements leads to some
non-linear (thus, not easily detectable by the prefetch engines—recall §1) access
patterns. By forcibly limiting the leaf matrix dimensions, while storing and tiling
them in a recursive Z fashion, we increase the locality of memory accesses when
a right-hand side vector is involved, regardless of the matrix sparsity pattern.
However, Z-ordering nonzeroes of matrices which are not square or not sized
as powers of 2 could lead to a somewhat imbalanced partitioning (see Fig. 2.2,
where we depict small dense matrices with “singleton” leaves).

To address this issue, we have modified the Z-ordering algorithm to handle
non-square matrices and non-power-of-two sized matrices.

We call our modification balanced Z ordering, or Zb. Let the matrix size be
m × k and i, j a nonzero coordinate (1-based). Let lbits(i) be the index of the

highest bit in the binary representation of i: lbits(i)
def
= blog2(i)c, and let βmk

be lbits(min(m, k)).

Then define: µ : i,m, βmk ∈ N → i∗ ∈ N as µ(i,m, βmk)
def
= γ(i, bm/2c) ·

(2βmk+µ(i−bm/2c,m−bm/2c, βmk−1))+(1−γ(i, bm/2c))µ(i, bm/2c, βmk−1).

With γ(x, y) = 1 when x>y and 0 otherwise. The Zb order function of

interest is then defined as: Zb(i, j,m, k)
def
= Z(µ(i,m, βmk), µ(j, k, βmk)).

Figure 2.8 shows the Zb-ordered elements of some small dense matrices. Note
that using Zb instead of Z has a downside: Zb is not bijective. This is not a
problem for our application, as long as we do not need a bijection, and use
Zb ordering for sorting purposes only. Knowing values of m, k, in a Zb-ordered
coordinates array, we can use binary search to easily locate split points delimiting
the four submatrices; see the steps listed in Fig. 2.7.

Once the first four quadrants are delimited, the procedure could be applied
to the individual quadrants again, recursively.

By itself, the procedure for locating the submatrices requires repeated binary
searches over the input arrays. Since after each run of the proposed search
routine the number of enclosed nonzeroes is known, one could define a simple
criteria when to stop subdividing.

In any case, the physical relocation of the input arrays (or shuffling), could
be postponed after all the boundaries of leaf submatrices are located.

Figure 2.7: FIND QUAD SPLIT POINTS(I, J, n, frow, fcol, rows, cols)
/*Assumes that the n-sized row and column indices arrays I, J are1

Zb-sorted*/
/*Also assumes that elements in I are contained in the2

[frow...frow + rows] interval, and that elements in J are contained in
the [fcol...fcol + cols] interval.*/
Binary search for the first index m ∈ [1...n] s.t. I[m] ≥ d frow+rows

2 e3

Binary search for the first index u ∈ [1...m] s.t. J [u] ≥ d fcol+cols2 e4

Binary search for the first index l ∈ [m...n] s.t. J [l] ≥ d fcol+cols2 e5

/*The four quadrants are located (clockwise) in the intervals:6

[1...u), [u...m), [m...l), [l...n] of the COO arrays*/
return u,m, l7

We notice that some of the quadrants are empty, whenever any of the fol-
lowing holds: 1 = u, l = m, m = l, l = n+1. In Fig. 2.7, we denote an ascending

53

Figure 2.8: Zb sorted coordinates for 2x2,3x3,4x4,5x5,6x6,7x7,8x8,16x16 dense
matrices, sized as non power of 2. Notice the resulting balanced quad-partitions.

interval including x and excluding y with [x, ..., y).

In the following section, we deal with the topic of when stopping subdivisions.

2.3.4 Recursive Subdivision

To prevent indefinite recursive splitting, we introduce a recursion decision (or
cutoff) function. Currently, this function (δ) is a heuristic working with matrix
dimensions m, k, number of nonzeroes nnz, outermost machine cache size CS,
numerical and pointer element sizes (expressed in bytes); respectively ES and
WS.

eab(m, k, nnz,ES,WS)
def
=

�� ��2.6

ES · (nnz + nnz +m) +WS(m+ nnz)
�� ��2.7

δ(m, k,nnz, CS,ES,WS)
def
=

�� ��2.8

True, if eab(m, k, nnz,ES,WS)> α CS, or
�� ��2.9

True, if nnz · ES>β CS
�� ��2.10

False, otherwise
�� ��2.11�� ��2.12

Here, eab is an estimate of the accessed bytes during a CSR SpMV on a (sub)
matrix with the given parameters. Term ES ·(nnz+nnz+m) takes into account
the nnz accessed multiplicand vector elements, the nnz matrix elements, and
m written output vector elements. The WS · (m+nnz) term takes into account
the m row pointer indices and the nnz column index elements.

Figure 2.9 depicts two matrices partitioned with this heuristic, on machines
with differing outermost cache size.

Since our heuristic relies on the count of contiguous nonzeroes, we are indeed
applying a variant of cache blocking (see §2.1). This heuristic does not take into
account many other possible factors, such as: the cache line size, the matrix
pattern, or whether the submatrix is full rank or not. We leave these points
open for a future discussion.

2.3.5 Random Access Operations

Algorithms for many operations on CSR/CSC are still useful with the recursive
RCSR/RCSC layouts. In the context of Sparse BLAS computations, besides the
SpMV/SpSV kernels, it is also desirable to implement the (pattern preserving)
nonzero coefficient set/get operations, as well as the set/get operation for the
matrix diagonal elements. These operations may be useful in the applications
of our interest, so we discuss briefly their implementation.

Since in each quad-tree node of RCSR/RCSC we store the (submatrix)
relative location within the whole matrix, these operations may be trivially
implemented by combining traditional CSR/CSC kernels at the leaf submatrix
level with a tree visit mechanism. For a single nonzero set/get operation, only
a single traversal of the tree structure is needed. That is, in addition to the
CSR/CSC set/get operation (involving a single random array access to locate
the row/column address, followed by a binary search and the write/read on the

55

found memory location — see §1.4), linked nodes of a tree shall be traversed. The
number of nodes to be traversed (and thus, the cost of indirect memory accesses)
may vary between leaf submatrices, since it depends on the nonzeroes density in
the matrix. By the way, since the leaf submatrices are sized proportionally to a
constant (a hardware parameter — the outermost cache memory size CS), the
worst case for the matrix quad-tree height h can be estimated as proportional
to log4(nnz/CS); that is O(ln(nnz)).

For the diagonal set/get operation, each of the submatrices (at leaf level or
not, in a recursive formulation) laying on the main diagonal has to be accessed
once. A worst case estimate for the number of submatrices to be traversed is 2h;
in any case, this number cannot exceed the submatrices count, which is bound
in proportion with the cache size (see §2.3.4).

Other operations (for instance, rows/columns extraction) may be imple-
mented with similar techniques, revolving around the idea of wrapping a tradi-
tional CSR/CSC algorithm with a recursive traversal mechanism. The additional
cost of traversing the tree structure may be amortized in two ways: first, by the
limited number of leaves (roughly cache-sized); secondly, by the smaller (with
regards to a full CSR/CSC array) amount of indices arrays to be scanned by
the binary search routines, at the leaf level. Moreover, breakdown in submatri-
ces may allow coarse grained parallelism in heavier operations, like diagonal or
block extraction.

2.4 First Experiments with RCSR

In this section we report performance results of a first, basic usage of our RCSR
partitioning. These experiments are also documented in [MFT+10]. Please refer
to §A.1 for the experimental setup: matrices, machines, and adopted methodol-
ogy.

First, we want to compare the performance of the execution of SpMV for
RCSR to that of CSR with a single thread/core. Then, we take a preliminary,
simplistic approach to a parallelization, which is limited to two processors/cores.
Specifically, we implement parallel SpMV by overlapping the computation of two
terms in

�� ��2.3 , using the OpenMP #pragma omp parallel for directive (in a
fixed loop over a range of two); applied to the upper and lower pairs of matrix
quadrants. Thus, the two-core execution of the SpMV will spawn two execution
threads, of which the first will visit submatrices in the upper two quadrants
of the matrix, and the second one will visit the lower two. To get means of
comparison, we also run the same experiments using the publicly available CSB

Figure 2.9: Matrices ASIC 320k (left two) and torso1 (right two) δ-partitioned
on a 1MB-sized outermost cache machine (M7) (first, third from left), and on
a 2MB-sized outermost cache machine (M2) (second, fourth from left).

(see §2.2) prototypal code8. In subsequent chapters we will deal with the topic
of a scalable parallelization (that is, for more than two threads) of SpMV and
SpSV for RCSR.

Figures 2.10,2.11,2.12 summarize performance data collected running exper-
iments with matrices found in Table A.4, on machines reported in Table A.2.
Looking at them, we are interested primarily in:

• scalability of RCSR/RCSC against that of CSB (from one to two cores)

• performance of single core RCSR/RCSC against non recursive versions
CSR/CSC

• performance of single core RCSR/RCSC against single core CSB

• which matrices perform better for which storage formats

• whether RCSR/RCSC is better than CSB on a particular machine

We observe that:

1) Generally, we find the (double threaded-)scalability of our recursive parti-
tioning comparable to that of CSB. RCSR/RCSC speedup ranges from
1.29 (M7, neos, RCSR) to 1.97 (M2, spal 004, RCSR), while CSB* both
worst (0.91, torso1) and best (1.98, cont11 l) speedups occur on M7. We
observe that M7 favours the 2-core CSB* code over the RCSR/RCSC ;
both in terms of mean speedup (1.68 vs. 1.45) and mean performance

8We refer to the archive csb code.tgz, distributed on Aydın Buluç’s website, dated July
10, 2009, with md5 checksum 14c12c6c6f0bd548d06b2f6f4b78d118, sized 19067 bytes.

57

M
Fl

op
s/s

ec

SpMV performance

CSB*1
CSB*2
CSC*1

CSC1
CSR1
RCSC1

RCSC2
RCSR1
RCSR2

ASIC_320k

Rucci
1

co
nt11_l

neos
rail4284

rajat31
sls

sm
e3Dc

sp
al_004

sto
mach

torso
10

20
0

40
0

60
0

80
0

Figure 2.10: SpMV performance on M5, compared to CSB.

(308.9 MFLOPS; +9% more than the RCSR/RCSC). We conjecture this
to be an advantage of CILK++ over plain OpenMP on M7’s multipro-
cessor architecture. On the newer machines (M2,M5) we observe the
two-core RCSR/RCSC to perform (≈ 450 and ≈ 547 MFLOPS vs 407.9
and 525.7) and scale (1.75 vs 1.65) slightly better than CSB. Note that
our current parallelization strategy does not assure load balance among
the two threads: the first level recursive partitioning is influenced by the
matrix dimensions only, thus introducing load imbalance for matrices with
disparity of nonzero element count between the upper and lower quadrants.
However, most of testbed matrices are quite balanced (51% on nonzeroes
in the upper quadrant, 49% in the lower one), except for ASIC 320k:
(57%/43%), and torso1: (48%/52%). We observe that notwithstanding
this imbalance, matrix ASIC 320k scales up well, even better than other
matrices.

M
FL

OP
S

SpMV performance

CSB*1
CSB*2
CSC*1

CSC1
CSR1
RCSC1

RCSC2
RCSR1
RCSR2

AS
IC

_3
20

k

Ru
cc

i1

co
nt

11
_l

ne
os

ra
il4

28
4

ra
jat

31

sls

sm
e3

Dc

sp
al_

00
4

sto
m

ac
h

to
rs

o10
10

0
20

0
30

0
40

0

Figure 2.11: SpMV performance on M7, compared to CSB.

2) We observe that the utilization of recursive partitioning usually impairs the
performance on single core, when compared to the non recursive counter-
part. Consider matrix Rucci1. When using RCSR, it reaches only about
half of the (quite good, on all three machines) performance of CSR. The
same holds for RCSC. This performance drop is justified by the average
nonzero per row count; for Rucci1, less than 4 elements. Indeed, with the
current partitioning policy based on the δ decision function (which does
not take in consideration the number nonzeroes per row), a matrix like
this, which is quite big (as it exceeds several times the outermost cache size
of our machines) becomes partitioned into a significant number of smaller
matrices (341 on M7, 85 on M2), thus increasing both tree traversal over-
head, and possibly introducing very scarcely populated matrices, with a
consequent high index overhead. Similar arguments hold also for cont11 l,
sls, rajat, neos.

59

M
Fl

op
s/s

ec

SpMV performance

CSB*1
CSB*2
CSC*1

CSC2
CSR2
RCSC1

RCSC2
RCSR1
RCSR2

ASIC_320k

Rucci
1

co
nt11_l

neos
rail4284

rajat31
sls

sm
e3Dc

sp
al_004

sto
mach

torso
10
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Figure 2.12: SpMV performance on M2, compared to CSB.

3) Similar observations concern CSB too, which outperforms RCSR/RCSC on
a single core. The CSB format performs better, because while it is based
on submatrices partitioning, it does not incur in any recursion overhead.

A possible way to improve performance of the RCSR/RCSC would be
taking in consideration a nonzero per row or per column count based
threshold to prevent unnecessary subdivisions (unless the number of par-
titions is less than the number of computing cores).

4) The best performing matrix on all machines was torso1, stored in our re-
cursive CSR format, in both single and two cores cases (see, Table 2.1).
Indeed, matrices gaining the most from (single or multicore) RCSR/RCSC
are rail4208, sme3Dc, spal 004, stomach, torso1. These are also the ma-
trices with highest nonzeroes per row count (as high as 4524.96 for the
spal 004). On the other hand, we observe that CSR/RCSR beats CSC/RCSC

in almost all cases (except Rucci1 and sls). The reason is the differing
read/write pattern of column and row based SpMV kernels. For algorith-
mic reasons, CSC in RCSC perform one write per matrix nonzero ele-
ment (see Fig. 1.16), while CSR in RCSR perform one per matrix row
(see Fig. 1.17). Because both (Rucci1 and sls) matrices are tall (rows �
columns), the higher write rate of CSC/RCSC is not a problem, as com-
pressing columns rather than rows decreases greatly memory traffic of
row indices. This performance behaviour suggests us that comparing the
nonzeroes per column to the nonzeroes per row count could give us hints
on the memory traffic to be expected from a partitioning. Unlike row and
column-based representations, CSB is not impacted by these parameters,
as at the lower (cache block) level, it does not bias toward either rows or
columns.

5) As we have observed earlier, measurements collected on M7 favour the CSB
format, while machines M5, M2 favour RCSR/RCSC (see, Table 2.1).
This may be a consequence of both good load balancing capabilities and
low parallelization overhead of CILK++, as the overhead during the task
recreation on the second processor on M7 should be higher than the one
incurred on the two cores involved on M5 and M2.

machine best (1 core) best (2 cores)
MFLOPS format matrix MFLOPS format matrix

M7 359.9 CSR torso1 470.8 RCSR torso1
M5 554.7 CSR torso1 914.9 RCSR torso1
M2 385.8 RCSR torso1 714.5 RCSR torso1

Table 2.1: Matrices/codes best performing, for each machine in our test set.

2.4.1 Conclusions from the First RCSR/RCSC Experi-
ment

In §2.4, we have compared the RCSR and RCSC formats we have introduced
in §2.3 to a publicly available, high performance prototype for SpMV compu-
tations (CSB). We have compared the performance of our matrix layout and
algorithms, and found them close to that of CSB, with a simple single or dual
threaded parallelization. An advantage of the approach we propose, over CSB,
is the adoption of traditional CSC/CSR ordering for the recursive sparse blocks
of RCSR/RCSC. With this ordering, we allow our formats to easily support

61

and adapt well known algorithms originally supported by CSR/CSC; what is
necessary, here, is to write appropriate recursive wrappers to the various algo-
rithms. In forthcoming sections, we will develop: a SpMV algorithm supporting
the parallel execution of more than two threads (see §3.1); parallel triangular
solve (see §3.2); tuning techniques for higher efficiency (§4), and parallel matrix
build algorithms (§5).

2.5 More Literature and Related Topics

At the beginning of this chapter (see §2) we have introduced, with literature
examples, the concept of a hierarchical representation of sparse matrices.

Our approach, as well as that of others, has been motivated by the need for
efficient implementations of numerical algorithms. In the field of numerical anal-
ysis, a completely different research effort has been carried out for algebraically-
meant hierarchical representations of (a class of) matrices, and consequently
(computationally) improved methods for the solution of many matrix problems.
This research direction is totally uncorrelated to our effort of code and data
structures engineering, but is worth mentioning, notably because it results in
the application of algorithmic techniques which may seem similar to ours. For
a reference, see Hackbusch ([Hac99]).

In both of the CSB and RCSR expositions we have seen the usage of space
filling curves for obtaining lower cache miss rates during sweeps of array struc-
tures representing sparse matrices. The development of the first space filling
curve is attributed to Giuseppe Peano (see Sagan’s book [Sag96, p.1]), who
was dealing with the problem of finding a continuous mapping from the [0, 1]
segment to [0, 1]2 (or in general, any two-dimensional region). With the develop-
ment of digital computing machines, some of such mappings (of course, with a
discrete formulation) were considered as favouring efficient access to arrays laid
in storage devices. Indeed, G.M.Morton’s original work ([G.M66]) dealt with
minimizing average latencies when accessing (logically) bi-dimensionally stored
geodetic data9 on linearly addressed storage banks, via a custom mapping be-
tween geographic coordinates and data frames on hard disks.

This mapping has been known as Z-order or Morton-order since then.

Z-order finds use in Data Base Management Systems (DBMS’s); see Ra-
makrishnan and Gehrke’s book ([RG, Ch. 28.4]). It was only lately, with the

9To be precise, data about 600000 square miles of Canadian territory, in the frame of the
Canadian Land Inventory project.

increase of memory latencies-to-register access ratios, that such techniques were
being employed increasingly for the purpose of memory access efficiency.

Since the computational core of Z-ordering based techniques is bit-manipulation
based, the key to an efficient implementation lies often in the efficient use of as-
sembly instructions or machine-specific, low level programming interfaces(see
also Arndt’s book [Arn10])10.

We report here a number of studies with Morton/or other space-filling-curve-
based arrays order (for short, MO); in [TBK03], Thiyagalingam et al. evaluate
MO for dense linear algebra kernels execution; in [LK00], Lawder and King
explore MO for multi-dimensional indexing, in the context of a data base man-
agement system. There have also been experiments in the systematical or trans-
parent application of such techniques in existent systems/programs. For exam-
ple, in [JMC05] Jin and Mellor-Crummey evaluate techniques for the efficient
enumeration of Morton indices; in [GW04], Gabriel and Wise use a modified C
compiler for the transparent usage of Morton-ordered arrays. Finally, Raman
and Wise [RW08] give some algorithm for the generation of Z-Morton indices
coordinates from two-dimensional ones.

Regarding the use of recursive subdivision techniques for dense linear alge-
bra, there is a number of works by to Gustavson and Wasniewski; for instance,
[GRW07]. A study of recursive layouts for dense matrices multiplication is pre-
sented by Chatterjee et al. in [CLPT02].

Research efforts most similar to ours can be seen in Gottschling et al. [GWJ08],
where recursive layouts for dense matrices are described.

In [PPP04], Park et al. give proofs for cache-obliviousness of recursive (stor-
age) structures. In [PHP03], the same authors compare various block layouts to
those of Morton.

We also report the recent works of Yzelman and Bisseling, who use Hilbert
curves for sparse matrix–vector multiplication in [YB10]. The same authors
develop techniques for reordering and partitioning matrices, leading to recur-
sively subdivided layouts that are somehow similar to that of RCSR; see [YB10].
However their later work in [YB10] is focused on cache locality rather than par-
allelism; so their techniques are only partially comparable to ours.

10Or popular on-line resurces on bit-based techniques like http://www.cs.utk.edu/~vose/

c-stuff/bithacks.html or http://www.jjj.de/hakmem/.

63

http://www.cs.utk.edu/~vose/c-stuff/bithacks.html
http://www.cs.utk.edu/~vose/c-stuff/bithacks.html
http://www.jjj.de/hakmem/

3
Shared Memory Parallel Algorithms for

Recursively Quad-Partitioned Blocks

Overview

In the previous chapter (§2.3), we have first introduced our RCSR layout for
sparse matrices, and then, developed (and experimented with) a basic algorithm
for performing multiplication by a vector.

In this chapter, we present algorithms for performing the two core Sparse
BLAS operations (SpMV and SpSV) on matrices stored using the hierarchical
recursive blocks structure we have introduced. These algorithms are much more
parallel than the ones used in §2.3.1, as they do not map threads to submatri-
ces statically: threads are bound to leaf submatrices at runtime, changing the
working submatrix on a dynamical basis during the duration of a single SpMV
or SpSV. Therefore the unit of workload partitioning here, is the operation on
single leaf submatrices; threads coordinate among themselves in the choice of
submatrices via shared variables and a lock structure. This choice, coupled with
the choice of matching each submatrix (in terms of its nonzeroes occupation)
approximately to the size of the cache memory1 helps in avoiding an excessive
lock overhead. These algorithms make no assumption about the submatrices’
internal format/layout, thus allowing future design changes at the leaf level.
We have chosen not to use the quad-tree structure information directly in these

1We do not give mention here about the level of the cache (it is a crucial choice, as we will
explain later), but we wish to point out our key idea.

65

Figure 3.1: Recursive subdivisions of L factors of matrix g7jac180 (available
from [Dav10]) instantiated on machine M2 (left) and on the same machine, if
it had half the outermost cache size (right). Only leaf matrices are shown, with
a line joining them.

algorithms — we may use it in the future — now, only leaf level information is
used.

We present the SpMV algorithm in §3.1, and the SpSV algorithm in §3.2.
Performance results of the two algorithms implementations are presented in §3.3,
and we sum up concluding remarks in §3.4. Details of machines and matrices
used for these experiments are listed in §A.2.

Figure 3.1 shows the recursive decomposition of the L factor (obtained using
SuperLU—see Demmel et al. [DEG+99]) of the g7jac180 matrix, on different
machines. The blue line follows the order (which we call a balanced Z-order, or
Zb—see §2.3.3) that the submatrices follow, logically, within the whole matrix.

3.1 Parallel SpMV

Our multithreaded (shared memory parallel) SpMV is presented in Fig. 3.2.
It operates on leaf matrices, i.e. on the set of CSR matrices at the last level of
recursion (which depends on the density of nonzeroes in each submatrix region).

We explicitly form a temporary vector S of references to the actual N leaf
submatrices; we also allocate a temporary bitmap B, with one bit for each leaf
submatrix. Since nested subdivision guarantees that leaf matrices are pairwise
disjoint, we can use B to keep track of the “visited” matrix regions, in the
context of a single SpMV. We also keep track of the number of matrices visited
in a completed matrices counter, n, shared among threads. Workload is thus
managed among the active threads using the shared bitmap B, the counter n and
a lock structure. Each thread repeatedly scans the bitmap looking for workload,
until n = N . When an unvisited submatrix s is found, a lock is requested and
applied to the rows interval on which s is situated (in the original recursive
matrix). The lock is necessary because the SpMV on s will have to update the
output vector y in that range of rows. After the local SpMV is completed, the
lock on the rows interval of s ([s.roff, s.roff+s.rows]) is released, and the bit
corresponding to s is set. Our implementation makes use of critical sections
(in OpenMP, via the #omp critical directive) to control concurrent access
to the shared structures. Since the lock operates on individual submatrices row
intervals, there is no need to lock each submatrix, but only the selected interval
of rows. When another thread will pick an unvisited submatrix s′, it will get the
lock only if there is no intersection among the row intervals of s and s′. Execution
terminates after all of the submatrices have been visited, that is when n = N .

For symmetric matrices A = AT = L + LT + D, we store only the (non
strict) lower triangle (L + D) elements. For SpMV, we apply a variation to
the listing in Fig. 3.2. The computation corresponding to the upper triangle
U = LT can be performed using the lower triangle in a “transposed” form. This,
however, requires a specialized symmetric CSR SpMV code. Moreover, since the
symmetric kernel performs both the SpMV on s and on (sT −D) (s transposed,
minus the diagonal, if present in s), it updates two intervals of the destination
vector y; hence both intervals have to be locked. Note that this double lock
strategy could impact negatively on the achievable parallel performance.

For this reason, we conjecture that by subdividing symmetric matrices more
than unsymmetric ones, we would gain some parallelism back from them. Since
a detailed analysis of such a trade-off is beyond the scope of this section, we
omit its detailed investigation.

Note that the given SpMV algorithms do not specify any particular order
in visiting the leaf matrices; threads are free to cycle among submatrices re-
peatedly looking for “available” submatrices. In practice, this is not a big waste
of resources: for each leaf submatrix, we allocate a single bit in the bitmap B,
and a pointer (possibly with offset and dimension indices) in S. Since each leaf
submatrix is likely to occupy O(CS) (CS being the outermost cache size) bytes,

67

Figure 3.2: Multithreaded SpMV for leaf submatrices of a RCSR matrix.
S ← [s0, s1, . . . , sN−1] /*an array of terminal submatrices, in any order*/1

B ← [0, 0, .., 0] /*a zero bit for each submatrix*/2

n ← 0 /*count of visited submatrices so far*/3

while n < N do4

begin parallel5

s← pick an unvisited submatrix s from S6

/*(should have picked up s← S[i], with B[i] = 0)*/7

[f, l]← [s.roff , s.roff+s.rows]8

if locked([f . . . l]) then cycle9

lock([f . . . l]) /*we lock y on s’s rows interval*/10

/*perform SpMV on s and x[s.coff:s.coff+s.columns] into y[f : l]*/11

y[f : l]← y[f : l] + s · x[s.coff:s.coff+s.columns]12

B[i]← 1;n← n+ 113

unlock([f . . . l])14

end parallel15

end16

the memory traffic associated in accessing B, when looking for submatrices that
are “available” is negligible; in most cases the bitmap will fit in the first level
cache, and scanning repeatedly through it will not stress the memory hierarchy.
Repeated scans of S, instead, might cause overhead; however, actual data arrays
of submatrix s, at index i in S is only needed in the case when B[i] = 0, and
this last memory access has a high hit probability (since a lock on the interested
output vector intervals is the only remaining constraint preventing the usage of
that submatrix). A possible resource-wasteful situation would be a repeated
lock contention on behalf of a single thread, when the rows lock is not avail-
able; this situation would lead to the overuse of cache snooping circuitry among
cores/CPUs. This is not expected to be a problem (on current architectures,
employing variants of the MESI (see Drepper [Dre07, §3.3.4]) cache coherence
protocol), since this situation would imply that other threads are busy perform-
ing the SpMV, and thus likely not to have any shared variable cached. Obviously,
this problem is exacerbated when the last submatrices are visited, and there is
no more actual work to be available; thus, it could be detected by comparing
the n counter with N and the available work items.

It should be stressed that the proposed approach will also work, with mini-
mal modification, for the transposed case (employed in iterative methods such

as BiCG or QMR—see Barrett et al. [BBC+94]), whereas with a CSR represen-
tation, a parallel transposed SpMV would be challenging. With our approach,
(or generally, with any coarsely blocked format; see Buluç et al. [BFF+09, s.1]
for a brief discussion) this task is more likely to be efficient.

3.2 Parallel SpSV

Let us look at the recursive breakdown of the lower triangular solve operation
(x← L−1x):∣∣∣∣x1

x2

∣∣∣∣← ∣∣∣∣L1 0
M L2

∣∣∣∣−1 ∣∣∣∣x1

x2

∣∣∣∣⇒ ∣∣∣∣x1

x2

∣∣∣∣← ∣∣∣∣ L−1
1 x1

L−1
2 (x2 −ML−1x1)

∣∣∣∣ �� ��3.1

Decomposition Fig. 3.1 is quite straightforward, but without any further struc-
ture, it offers limited support for parallelism, as this would be only possible
within the SpMV operation occurring in “x2 ← L−1

2 (x2−M(L−1x1))”. This de-
pendency requires that the SpSV computation on the diagonal blocks can only
be performed after all blocks on its left have been visited by the SpMV compu-
tation. Thus, our SpSV algorithm also operates on leaf matrices only, ignoring
the intermediate matrices of the recursive structure. Note that we make explicit
use of the fact that the recursive partitioning results in square diagonal blocks.
Listing 3.3 outlines the SpSV algorithm, which operates on the leaf matrices
of a recursively partitioned matrix; this algorithm could be applied with any
matrix partitioning resulting in disjoint submatrices which are square on the
main diagonal.

Observe that in this algorithm, as a first thing, we sort leaf submatrices in a
way that allows to perform the SpSV without any sophisticated data structures.
As the listing shows, each submatrix not on the diagonal is involved once in the
SpMV kernel. On the other hand, the SpSV kernels are executed on the diagonal
submatrices only. Since the core update in an in-place lower triangular solve on
a matrix L and vector x is “xi ← (xi −

∑i−1
j=1 xjLij)/Lii” there is a horizontal

dependency (SpMV), which must be satisfied before performing SpSV on the
diagonal blocks. Formally, the sorting criteria for a pair (s, s′) of submatrices
follows the total order defined as: (i) if any one of the matrices (say, s) lies on
the diagonal (as mentioned before, due to recursive subdivision, a submatrix
intersecting the diagonal is necessarily square), then it comes after s′ only if the
last row of s′ is less than or equal to the last row of s; (ii) if neither of s, s′ lies on
the diagonal, the one with the smaller last column index comes first, with ties
broken according to the smaller first row. With this ordering, if the submatrix

69

Figure 3.3: Multithreaded Lower Triangular Solve for an RCSR Matrix
S ← [s0, s1, . . . , sN−1] /*a sorted array of terminal submatrices*/1

B ← [0, 0, .., 0] /*a zero bit for each submatrix*/2

D ← [d1, d2, .., dN−1] /*dependencies, for each submatrix*/3

n ← 0 /*count of visited submatrices so far*/4

while n < N do5

begin parallel6

s← pick an unvisited submatrix s from S (say s← S[i], B[i] = 0)7

[f, l]← [s.roff , s.roff+s.rows]8

/*pick another submatrix if this row interval is locked*/9

if locked([f . . . l]) then cycle10

if s.roff = s.coff then11

if B[D[i]] = 1& . . .&B[i− 1] = 1 then12

lock([f . . . l]) /*s is a diagonal block ; we lock x on its rows*/13

/*perform SpSV on s*/14

x[f : l]← s−1x[f : l]15

B[i]← 1;n← n+ 116

unlock([f . . . l])17

else18

cycle /*pick another submatrix */19

end20

else21

if B[D[i]] = 1 then22

lock([f . . . l]) /*s is not a diagonal block; we lock x on its23

rows*/
/*perform SpMV on s*/24

x[f : l]← x[f : l] + s · x[s.coff:s.coff+s.columns]25

B[i]← 1;n← n+ 126

unlock([f . . . l])27

else28

cycle /*pick another submatrix */29

end30

end31

end parallel32

end33

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

FEM_3D_thermal2−CSL

av41092−CSL

g7jac180−CSL

g7jac200−CSL

ohne2−CSL

poisson3Db−CSL

sme3Dc−CSL

torso1−CSL

venkat50−CSL

0
200

400
600

800
100

0

Figure 3.4: SpMV performance on M1, L factor matrices.

si is on the diagonal, it can be visited only after all of the matrices sj , with
j < i were visited. In particular, if si and sj are both on the diagonal, j < i,
and the last row of sj comes immediately before the first row of si, we say that
sj is a dependency of si

2 . As far as the implementation is concerned, we put
dependency information in a temporary, shared vector D, which we compute
by scanning S. The actual operation is in a way similar to the hybrid parallel
triangular solve by block anti-diagonals and block columns, proposed by Mayer
in [May09]. The main difference is that our approach is “implicit,” as threads
run through “available” matrices and “parallel zones” are unlocked only after
portions of the solution are solved.

3.3 Experimental Results for SpMV and SpSV

The bar plots in this section report the performance in MFlops (millions of
floating point operations per second) for a specific matrix, algorithm and number
of utilized cores3.

2This is an instance of topological sorting—see Knuth [Knu97, § 2.2.3/p.261] or Cormen
et al. [CLRS09, § 22.4].

3Please refer to §A.2 for a full description of the experimental setup we used.

71

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

Rucci1
rajat31

sme3Dc
torso1

0
500

100
0

150
0

200
0

Figure 3.5: SpMV performance on M1, unsymmetric matrices.

As seen in section 3.2, the SpSV algorithm we propose is based on the use
of SpSV and SpMV kernels for the CSR; hence an efficient SpMV is needed
for an efficient SpSV. During our experimental runs, we also collected single-
threaded performance of the plain CSR SpSV and SpMV on the triangular
matrices. We found that: i) CSR SpSV performance was slightly higher (by
no more than 5%) than that of CSR SpMV; ii) CSR SpMV usually (but not
always) outperformed the single-threaded RCSR by a few percent. Considering
the SpMV on M2 (Fig. 3.6,3.5) and M1 (Fig. 3.9,3.8), when executing 1 or 2
threads, we notice a stable performance level (almost) regardless of the matrix.
For 4-8 threads, we see more variation, as there is more memory channel usage,
and the memory access pattern becomes less regular (remember the naive nature
of the algorithm in Fig. 3.2). On M3 (Fig. 3.12,3.11), we do not observe such
regularities, and we witness what seems a memory bottleneck when moving to 4
and 8 threads. The symmetric kernels (Fig. 3.12) encounter the first scalability
problems on 4 threads, as they saturate the memory channel at a write-to-read
rate which is double respect to unsymmetric kernels. On the other hand, on
M2 and M1, the performance of the SpMV on symmetric matrices grows up to
8 threads (Fig. 3.6,3.9). M1 is the only machine able to achieve nearly linear
speedup for the SpMV kernels. Compared to CSB, RCSR performs better with a
smaller number of threads, but then encounters a scalability (and performance)

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

BenElechi1

F1 Ga41As41H72

af_0_k101

af_shell10

bone010

boneS10

kkt_power

ldoor

0
500

100
0

150
0

200
0

Figure 3.6: SpMV performance on M1, symmetric matrices.

limit before CSB. Note that on matrix torso1, RCSR performs better, just as
we experienced in §2.4 with a different parallelization strategy. The reason for
these performance patterns in RCSR and CSB can be explained by: i) the use
of shorter indices in CSB (See Buluç [BFF+09]), which in many cases alleviate
the memory bandwidth bottleneck; ii) regular access pattern in the CSR kernels
operating on submatrices, leading to high performance at the cost of earlier
limits from memory bandwidth.

There are cases in which performance is bad across the board; this is par-
ticularly true for matrices that have as few as 4 elements per row (kkt power,
Rucci1, rajat31). On these matrices, loading each right-hand side vector element
requires fetching of an entire line of cache, and with little or no spatial locality,
this is far too expensive. On M1, we witness a seemingly superlinear (Fig. 3.10)
scaling in the SpMV for the matrix ohne2: the overall results on M1 indicate
bad behaviour of serial RCSR, but this will need further investigation.

Looking at the results of the SpSV we note that despite the similarity of the
algorithms in Fig. 3.3 and 3.2, the performance scaling is sublinear, even on the
M1. This is not surprising (see also Mayer’s considerations in [May09]), as good
performance of the parallel SpSV depends on the structure of the lower trian-
gular matrix L; it must have a sufficient amount of parallel regions. In our case,
matrices should have enough off-diagonal submatrices, to parallelize the critical

73

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

FEM_3D_thermal2−CSL

av41092−CSL

g7jac180−CSL

g7jac200−CSL

ohne2−CSL

poisson3Db−CSL

sme3Dc−CSL

torso1−CSL

venkat50−CSL

0
200

400
600

800
100

0

Figure 3.7: SpMV performance on M2, L factor matrices.

path computations. While not astonishing, the observed performance speedups
— approximately 3 on M1(Fig. 3.13), to 2.5 on M2 (Fig. 3.14), and up to 1.5 on
M3 (Fig. 3.15) — conform to those reported in Mayer [May09]. As an example
of a difficult matrix, consider the L-matrix obtained from venkat50. After the
LU decomposition, the majority of its nonzeroes are in the diagonal blocks, and
most blocks are on the main diagonal. For such matrices (“almost banded”),
computation involves solving the diagonal subsystems serially, following with
almost-serial operations on the few off-diagonal submatrices. Matrices likely to
achieve a reasonable speedup from the multithreaded SpSV are the larger ones,
as their fraction of submatrices located on the diagonal is smaller. For instance,
the L factor of the matrix ohne2, on M2 (Fig. 3.13), is broken down in 1601
submatrices, of which only 10% are located on the diagonal. As a consequence
of this, we get an almost 3-fold SpSV speedup on M1.

3.4 Conclusions

The results presented in this chapter show the potential of the RCSR storage for-
mat for the implementation of main kernels (SpSV and SpMV) of a sparse level
2 BLAS. For both operations our unified approach was found to be competitive,

MF
lop

s/s
ec

CSB*01
CSB*02

CSB*04
CSB*08

RCSR01
RCSR02

RCSR04
RCSR08

Rucci1
rajat31

sme3Dc
torso1

0
500

100
0

150
0

Figure 3.8: SpMV performance on M2, unsymmetric matrices.

against approaches based on specialized data structures (see Mayer [May09]
and Buluç et al. [BFF+09]). It has to be stressed that we did not employ any
fine-tuning to the basic versions of the proposed format and algorithms. At the
same time, there exist many possibilities for modifying both the algorithms and
the data format itself, that are likely to improve the performance of the RCSR
without impairing its generality and/or functionality.

Here, observe that the sparsity pattern of matrices is a determinant factor
of parallelism in the RCSR: lower banded triangular matrices tend to limit par-
allelism of the SpSV, which can easily use all the memory bandwidth available,
especially if the matrix sparsity pattern is very irregular. One possible approach
to limiting stalls due to insufficient memory bandwidth is the use of shorter
column indices in CSR leaves; this will be explored in §4.1. We notice that in a
number of cases, our RCSR format has encountered scaling problems. We will
look for improvement in chapter §4.

In the perspective of many-core environments (and in light of the hyperspar-
sity property; see Buluç et al. [BG08]), approaches other than using CSR leaves
may be advantageous, too. In §4.3 we will evaluate the usage of heterogeneous
leaf submatrix formats.

Another possibility would be the parallelization of the execution of the leaf
SpMV dependencies in SpSV by a different row locking strategy.

75

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

BenElechi1

F1 Ga41As41H72

af_0_k101

af_shell10

bone010

boneS10

kkt_power

ldoor

0
500

100
0

150
0

200
0

250
0

Figure 3.9: SpMV performance on M2, symmetric matrices.

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

FEM_3D_thermal2−CSL

av41092−CSL

g7jac180−CSL

g7jac200−CSL

ohne2−CSL

poisson3Db−CSL

sme3Dc−CSL

torso1−CSL

venkat50−CSL

0
100

200
300

400
500

Figure 3.10: SpMV performance on M3, L factor matrices.

MF
lop

s/s
ec

CSB*01
CSB*02

CSB*04
CSB*08

RCSR01
RCSR02

RCSR04
RCSR08

Rucci1
rajat31

sme3Dc
torso1

0
200

400
600

800
100

0

Figure 3.11: SpMV performance on M3, unsymmetric matrices.

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

BenElechi1

F1 Ga41As41H72

af_0_k101

af_shell10

bone010

boneS10

kkt_power

ldoor

0
500

100
0

150
0

Figure 3.12: SpMV performance on M3, symmetric matrices.

77

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

FEM_3D_thermal2−CSL

av41092−CSL

g7jac180−CSL

g7jac200−CSL

ohne2−CSL

poisson3Db−CSL

sme3Dc−CSL

torso1−CSL

venkat50−CSL

0
100

200
300

400

Figure 3.13: SpSV performance on M1, L factor matrices.

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

FEM_3D_thermal2−CSL

av41092−CSL

g7jac180−CSL

g7jac200−CSL

ohne2−CSL

poisson3Db−CSL

sme3Dc−CSL

torso1−CSL

venkat50−CSL

0
100

200
300

400
500

Figure 3.14: SpSV performance on M2, L factor matrices.

MF
lop

s/s
ec

RCSR01 RCSR02 RCSR04 RCSR08

FEM_3D_thermal2−CSL

av41092−CSL

g7jac180−CSL

g7jac200−CSL

ohne2−CSL

poisson3Db−CSL

sme3Dc−CSL

torso1−CSL

venkat50−CSL

0
100

200
300

400

Figure 3.15: SpSV performance on M3, L factor matrices.

79

4
Tuning RCSR: Recursive Sparse Blocks

Overview

In this chapter, we develop two modifications to the RCSR format. The goal
of these modifications is the improvement of time efficiency of SpMV/SpSV
operations, without making substantial changes to the underlying serial kernels
implementation.

In §4.1, we propose a technique for reducing the memory footprint of the
SpMV algorithm by employing a shorter type for coordinate indices, even on
large matrices. In §4.2, we look at the experimental results of this modification.
In §4.3 we introduce a second modification: we allow for some of the subma-
trices to be stored in a row-major coordinate format, and in §4.4 we look into
the experimental results of this modification. In §4.5 we draw some combined
conclusions for the two proposed modifications.

4.1 Reducing Index Usage in RCSR with Short In-
dices

4.1.1 Recursion Stop Criteria, Revisited

At the heart of RCSR lies the mechanism for the recursive partitioning. As we
have seen in §2.3.4, given an input matrix in a standard coordinate (COO) stor-
age, we subdivide it recursively into four quadrant submatrices. We terminate
the recursion (and consolidate leaf submatrices) only when a specific condition

81

is reached. Here, we modify the recursion stop decision function δ presented in
§2.3 to δh, as in:

eab(m, k, nnz,ES,WS)
def
=

�� ��4.1

ES(2 · nnz +m) +WS(m+ nnz)
�� ��4.2

δh(m, k,nnz, CS,ES,WS)
def
=

�� ��4.3

True, if(nnz · ES> 2 · CS and m > 216 and k > 216),
�� ��4.4

otherwise
�� ��4.5

True, if(eab(m, k, nnz,ES,WS)> α · CS and nnz/m>µ),
�� ��4.6

otherwise
�� ��4.7

False
�� ��4.8

Here, an m × k submatrix with nnz elements is considered a candidate for
subdivision. Some constants that are involved are: ES (element size) is the byte
occupation of a single matrix nonzero entry; WS (word size) is the byte occu-
pation of a full index element (4 bytes); CS (cache size) is a machine parameter
(see below); µ is the (minimum nonzeroes per row) limit, assuring that the block
is not too sparse (3 in our experiments).

The δh function is structured to take into account the combined effect of
the submatrix visits as well as the traffic on the right-hand side, and the result
vectors. Note that with this formulation the decision is essentially independent
of the thread-count. Contrary to §2.3.4, for the CS parameter we take into
account the size of the L2 cache (instead of the L3 cache). This is motivated
by the increased number of cores we are going to run our algorithm on. Here,
partitioning the matrix into very big chunks may cause higher contention for
cache lines when accessing the x and y vectors arrays. On the other hand, sizing
leaves around the L2 cache size may result in smaller leaves. Thus, we are trading
off a possibly higher overhead for better cache reuse potential. We remind the
reader that in CSR, accesses to the numerical values and the column indices
arrays proceed unidirectionally. As a result, prefetch engines make often perfect
predictions, but prefetched indices are used only once (per result vector). On
the other hand, caching of the right-hand side and the result vectors would be
desirable, but is difficult to achieve, because of the unpredictable access sequence
caused by the pattern of nonzeroes in the input submatrix (recall the discussion
in §1.2). Because of these reasons, it is difficult to determine, or even to define,
an “optimal” CS parameter; thus the cutoff function δh, above, would need
further study which is beyond the scope of this experiment.

4.1.2 Support for 16 bit Indices

The memory requirement for index arrays of a square d × d matrix with n
nonzeroes, stored in the CSR format, with an 8-byte numerical type (like double
or float complex) and 32-bit indices is 4 · d + (8 + 4) · n bytes. If instead of
using 32 bits, we store the column indices using 16 bits, the requirement would
become 4 · d + (8 + 2) · n bytes. Therefore, for n � d, this means a saving of
≈ 2/12 = 16%.

For a float numerical type, the advantage could be even greater: moving
from 4 · d + (4 + 4) · n to 4 · d + (4 + 2) · n bytes means savings as high as
≈ 2/8 = 25%. Since the standard in engineering and scientific applications is
double precision floating point numbers, we will report experiments with this
type.

In order to use 16 bit indices on leaf arrays, we have two choices: (1) make
sure that recursive subdivision proceeds until all leaves are dimensioned under
216, or (2) accept having some “emptier” but “large-dimensioned” leaves stored
using 32 bit column indices. The first approach has the advantage of keeping
all the nnz indices small, but has the flaw of potentially abusing the subdivi-
sion process and leading to an excessive number of submatrices. This, in turn,
would imply emptier sub-rows, and potentially more indexing space wasted in
row pointers arrays, with an outcome of using more indexing than before the
modification. The second approach allows cases which don’t benefit from the 16
bit variation. We chose a mid-way approach: we force subdivisions as long as
matrix indices don’t fit into 16 bit indices and nonzero elements occupation is
relevant; after that subdivisions are still allowed, but with stricter rules. Note
that even with this approach:

• Some matrices may not use 16 bit indices at all (if they do not contain
enough nonzeroes to be split, but have a big dimension).

• The potential overall bandwidth saving could be more than 16% (if we
consider that extra horizontal splits could prevent from storing the row
indices of submatrices with empty lower quadrants).

In the cutoff function δh, we also prevent matrices with an excessively small
nonzeroes/rows ratio (µ) from being further subdivided.

In the following, we call RCSR the format of matrices determined by the cut-
off function δh without line 4; we call RCSRH the format of matrices determined
by the full cutoff function δh, with submatrices suitable for 16 bit indices.

Please note that algorithms for accessing randomly the individual matrix

83

nonzeroes as discussed in §2.3.5 are still valid for RCSRH, as long as appropriate
16 bit indices CSR algorithms are implemented.

4.2 Experimental Evaluation of RCSR with Com-
pressed Indices

To have an insight into the implications of the modified subdivision heuristic
described in §4.1.1, let us analyze the results of our experiments. In the follow-
ing, we are concerned with the transition from RCSR (32 bit column indices
for the Recursive CSR) to RCSRH (RCSR with CSR leaves that have 16/32
bit column indices), with emphasis on results for largest numbers of cores and
scalability. For the sake of comparison with M2, we used only 8 out of the 12
cores available on M4. Note also that here we are not primarily concerned with
absolute performance values, although we will comment on them in the most
interesting cases.

Please refer to §A.3 for a full description of the experimental setup we used.

4.2.1 Unsymmetric Matrices

We depict performance on machines M4 and M2 for square matrices in Fig. 4.2
and 4.4, and for non-square ones in Fig. 4.1 and 4.3.

With the usage of RCSRH we notice:

• For most matrices we have a performance improvement;

• Some matrices show poor performance;

• Some matrices have better scalability, but lower absolute performance;

Among the ones which do scale and improve with use of 16 bit indexing, on M4
(Fig. 4.2 and 4.1), for the non-square matrices, we gain: 25% for c8 mat11 I, 20%
for rail2586, 15% for spal 004. For the square matrices on the same machine we
gain: 17% for venkat01, 30% for rma10, 19% for sme3Dc. Since matrices rma10,
c8 mat11 I and venkat01 are only few times the size of the L3 cache and we
measure performance with hot caches, their speedup is probably higher due to
a limited cache reuse phenomenon across SpMV’s. It is thus less representative
than that obtained for bigger matrices: sme3Dc, rail2586, or spal 004.

On M2 (Fig. 4.4 and 4.3), we observe a similar performance pattern. The
benefits seem slightly milder here, though. The highest improvements are gained
for matrices rma10 (11%), raefsky3 (10%) and c8 mat11 I (9.5%).

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

12m
onth1

c8_m
at11_I

ch8−8−b5

cont11_l

diego−M
M

−573x230k

GL7d19

neos
rail2586

rail4284

rel9
relat9

Rucci1

sls spal_004

tp−6

0
10

00
20

00
30

00
40

00

Figure 4.1: SpMV performance on M4, rectangular matrices.

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

ASIC_320k

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

rm
a10

sm
e3Dc

stom
ach

torso1

TSOPF_RS_b2383

venkat01

venkat50

wb−edu

wikipedia−20060925

0
10

00
20

00
30

00
40

00
50

00

Figure 4.2: SpMV performance on M4, square matrices.

85

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

12m
onth1

c8_m
at11_I

ch8−8−b5

cont11_l

diego−M
M

−573x230k

GL7d19

neos
rail2586

rail4284

rel9
relat9

Rucci1

sls spal_004

tp−6

0
50

0
10

00
15

00

Figure 4.3: SpMV performance on M2, rectangular matrices.

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

ASIC_320k

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

rm
a10

sm
e3Dc

stom
ach

torso1

TSOPF_RS_b2383

venkat01

venkat50

wb−edu

wikipedia−20060925

0
50

0
10

00
15

00
20

00

Figure 4.4: SpMV performance on M2, square matrices.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

12m
onth1

c8_m
at11_I

ch8−8−b5

cont11_l

diego−M
M

−573x230k

GL7d19

neos
rail2586

rail4284

rel9
relat9

Rucci1

sls spal_004

tp−6

0
5

10
20

30

Figure 4.5: Index usage (bytes per nonzero) on M4, rectangular.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

12m
onth1

c8_m
at11_I

ch8−8−b5

cont11_l

diego−M
M

−573x230k

GL7d19

neos
rail2586

rail4284

rel9
relat9

Rucci1

sls spal_004

tp−6

0
5

10
15

20
25

Figure 4.6: Index usage (bytes per nonzero) on M2, rectangular.

87

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

ASIC_320k

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

rm
a10

sm
e3Dc

stom
ach

torso1

TSOPF_RS_b2383

venkat01

venkat50

wb−edu

wikipedia−20060925

0
5

10
15

Figure 4.7: Index usage (bytes per nonzero) on M4, square.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

ASIC_320k

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

rm
a10

sm
e3Dc

stom
ach

torso1

TSOPF_RS_b2383

venkat01

venkat50

wb−edu

wikipedia−20060925

0
2

4
6

8
10

14

Figure 4.8: Index usage (bytes per nonzero) on M2, square.

Figures 4.7.4.8,4.5,4.6 show the relative index usage (column and row pointer
indices byte usage per nonzero element) for non-symmetric matrices on both
machines. There, we observe that the aforementioned matrices, which both scale
and gain from index compression1 have less index overhead when stored as
RCSRH. The saving on indexing storage in these matrices is about 50%, which
means that almost all of their submatrices have been converted to use 16 bit
column indices. Savings near to 50% mean a high relevance of shorter column
indices to row pointers (which remain at 32 bit). In fact this was possible because
of the high nonzeroes/rows ratio for these last matrices (see Table A.8): 539
for c8 mat11, 3097 for rail25986, 4524 for spal 004, 73 for both sme3Dc and
torso1. Matrices with high nonzeroes/rows ratio are also the ones on which
RCSR results in better performance.

We consider the obtained 10%..16% improvements reasonable: the saving in
index overhead reduces stalls, thus allowing for more input to the arithmetic
units, and thus higher floating point throughput.

Let us now consider the cases where there was almost no performance gain.
Here we deal with matrices which (a) don’t scale either in RCSR or in RCSRH,
(b) ones which scale only in RCSRH, and (c) ones which lose performance when
going from RCSR to RCSRH.

Weak scaling for RCSR may originate from a combined effect of limited
bandwidth and bad partitioning. A bandwidth bottleneck is what usually limits
scaling in matrices which are partitioned into “too many” leaves (e.g. Rucci1 in
RCSRH, tp-6). Let us take a closer look at the number of leaf submatrices (due
to space limitations, we report only the selected cases) of those matrices which
show poor or weak scaling in RCSR. On M4, these are: patents, rajat31, wb-
edu among the square ones, and cont11 l, diego-MM-573x230k, rajat31, cage15,
neos, patents, rel9, relat9, Rucci1 among the non-square ones. Except for diego-
MM-573x230k and cage15, all of them have a nonzeroes/rows ratio smaller than
6, which is quite low. While a low nonzeroes/row ratio is not per se a reason for
limited scaling, if these rare nonzeroes are not compactly distributed within the
matrix, index overhead could be high due to the subdivisions (which introduce
row pointer arrays), thus preventing acceptable scaling. Another consequence of
a low nonzeroes/row ratio is that the partitioning function δh tries to prevent
degenerate cases with submatrices too sparse. Therefore, it could happen for
such matrices, especially among the smallest ones (even if outgrowing the L2
cache dozens of times), that they get subdivided into a number of submatrices

1Here, we use the term index compression as a shorthand for index representation overhead
reducing. A more appropriate use of the term would be in the context of specific encoding
techniques on indices; see Kourtis et al. [KGK08].

89

not large enough to scale with the available threads.
For instance, on both machines, Rucci1 gets partitioned by RCSR into 4

leaves only. When using RCSRH, Rucci1 gets subdivided into 64 leaves on
M2, and 256 on M4. These subdivisions on M4 are enough to make RCSRH
performance drop below that of RCSR (Fig. 4.1). The performance drop is a
consequence of the very short sub-rows induced by subdivisions, which almost
quadruple the indexing overhead (Fig. 4.5). At the same time, on M2 the in-
dexing overhead almost doubles (Fig. 4.6), but here, the bad scalability of RCSR
prevents the code from running efficiently with more than 4 cores on Rucci1,
and RCSRH results in being faster. An optimal handling of this situation is
hard to achieve.

This phenomena occur on the matrices which can be regarded as “badly
partitioned” by δh. Eight core performance of RCSRH on cont11 l, neos, rel9,
relat9 (Fig. 4.3) outperforms RCSR only because the extra subdivisions allow
having more submatrices than cores (and thus, achieve scalability), while RCSR
is stuck with too few subdivisions. On M4, the same matrices show a similar
behaviour, but on them, RCSRH does not outperform RCSR.

There are some exceptions, though. The GL719d matrix on M4, for instance,
scales with both RCSR and RCSRH, but the latter has worse performance. The
reason for this is to be sought in the number of leaf matrices it gets partitioned
into: from 218 of RCSR, to 719 of RCSRH. This is because of the dimension
of the matrix, which is ≈ 2 · 106. Here, the δh recursion decision function has
to subdivide the submatrix until the candidate (dense enough) submatrices fit
into 16 bit indices. Alas, only 658 matrices out of 719 get to use these shorter
indices, and the overall index overhead per byte (Fig. 4.5) raises by some 20%.
Consequently, performance drops slightly.

The effect of forced subdivisions on submatrices is evident when looking at
the single threaded RCSRH performance: it performs often worse than RCSR,
except on matrices dimensioned less than 216, which do not require such forced
subdivisions at all (matrices raefsky3, av41092, c8 mat11 I, rma10, sme3Dc,
venkat01).

Fixing situations in which bad scaling occurs due to the exceptional sparsity
and big dimension of the matrix is not possible at the present state of the δh
function, because it only uses local information related to leaf submatrices. Such
cases should be handled by subdividing the matrix more, if the total number of
submatrices is deemed insufficient when compared to the number of available
threads, coupled with a mechanism to prevent excessively small leaves. We have
investigated into poor scaling of matrix diego-MM-573x230k. Despite 802/820
RCSR/RCSRH leaves on M2, and 1696/1765 RCSR/RCSRH leaves on M4, its

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
m

ip1
nd24k

s3dkq4m
2

0
50

0
10

00
20

00
30

00

Figure 4.9: SpMV performance on M2, symmetric matrices.

nonzeroes density is much higher in the upper rows; thus creating an excessive
contention for the upper submatrices (located in a limited row interval), and
not allowing effective workload distribution among threads.

Summarizing, we can state that for unsymmetric matrices, we have obtained
gains from using 16 bit indices, but in some cases we were also confronted
with a performance loss. The latter cases involved mostly excessive subdivision
resulting in additional overhead. Considering as a common feature of these badly
performing matrices their very low nonzeroes/rows count, we would say that at
the current state, RCSR/RCSRH is not the optimal format for them.

4.2.2 Symmetric Matrices

As we see in Fig. 4.10 and 4.9, the average performance of SpMV on symmetric
matrices is much higher than that on unsymmetric ones. The gain over the
unsymmetric cases is an immediate consequence of the representation of these
matrices (recall discussion in §1.2.2); coefficients strictly above the diagonal
(U == LT) are not stored explicitly and their contribution to the SpMV (y ←
y + Ux) is computed as (y ← y + LTx), together with the lower contribution
(y ← y + (L + D)x). This nearly halves the memory bandwidth needed when

91

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
m

ip1
nd24k

s3dkq4m
2

0
10

00
30

00
50

00

Figure 4.10: SpMV performance on M4, symmetric matrices.

reading the matrix; looking at Fig. 4.10 and 4.9, we see scaling almost for every
matrix.

The only matrix with limited RCSR scaling is kkt power, which is partitioned
into 57/204 leaves for RCSR/RCSRH on M4, and 40/132 on M2. Here, recall
the lower level of parallelism of the symmetric SpMV (see §3.1). Matrix kkt power
is not the (symmetric) matrix with the smallest number of leaves (that one is
ct20stif — 31 leaves on M2, 60 on M4), but has a big dimension and is very
sparse. We conjecture that the reason for the bad scaling of RCSR is that
its partitioning on both M4 and M2 is such that eight (two times four) row
intervals are enough to “cover” the whole range of rows. In the symmetric case
this is more likely to happen, since every submatrix not laying on the diagonal
will have both its row and column intervals in the result vector locked, when
“active”.

We report a plot of the recursion structure of the kkt power matrix on M4
in Fig. 4.13. Notice the visible and relevant change in layout when going from
RCSR to RCSRH.

The best results from using RCSRH on the symmetric matrices were ob-
tained on matrices bone010 (34% improvement on M4) and fcondp2 (28% im-
provement on both). As it can be seen in Figures 4.12 and 4.11, all matrices but

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
m

ip1
nd24k

s3dkq4m
2

0
1

2
3

4
5

6

Figure 4.11: Index usage (bytes per nonzero) on M2, symmetric.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RCSRH1
RCSRH2

RCSRH4
RCSRH8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
m

ip1
nd24k

s3dkq4m
2

0
1

2
3

4
5

6

Figure 4.12: Index usage (bytes per nonzero) on M4, symmetric.

93

Figure 4.13: Matrix kkt power as partitioned on M4, in RCSRH (right) and
RCSR (left). Notice the visible and relevant change in layout. The RCSRH
layout allowed overcoming severe scaling problems for this matrix and resulted
in a two-fold speedup (see Fig. 4.10).

one nearly halve their index overhead. In §4.1.2 we have stated that the best
bandwidth saving to be expected from CSR on 64 bit floating point number
matrices could be around 16%, but the overall saving for the whole RCSR may
be more or less, depending on the applied subdivision (which in turn, depends
on both system parameters and matrix structure). So the exact combination of
factors leading to a performance increase exceeding 16% on fcondp2 is difficult
to predict, but can be understood.

Figure 4.14 depicts a plot of the recursion structure of fcondp2 on M4. Note
that while the leaves count differs very slightly (passing from 255 to 257), the
resulting performance gain is 28%. Clearly, breaking down the big lower-left
submatrix improved the parallel execution of SpMV.

Figure 4.14: Matrix fcondp2 as partitioned on M4, in RCSRH (right) and RCSR
(left). The leaves count differs very slightly (from 255 to 257): the partitioning
heuristic broke the big lower-left submatrix in three. This change in the matrix
partitioning results in a 28% speedup of the parallel SpMV execution, because
of a higher granularity in the locking of the results vector, limiting threads
starving.

95

M
F

lo
ps

/s
ec

CSB8 RCSR8 RCSRH8

12m
onth1

ASIC_320k

atm
osm

odl

av41092

c8_m
at11_I

ch8−8−b5

cont11_l

diego−M
M

−573x230k

GL7d19

lhr71
neos

patents

raefsky3

rail2586

rail4284

rajat31

rel9
relat9

rm
a10

Rucci1

sls sm
e3Dc

spal_004

stom
ach

torso1

tp−6
TSOPF_RS_b2383

venkat01

venkat50

wb−edu

wikipedia−20060925

0
10

00
20

00
30

00
40

00
50

00

Figure 4.15: CSB vs RCSR SpMV performance on M4, unsymmetric.

M
F

lo
ps

/s
ec

CSB8 RCSR8 RCSRH8

12m
onth1

ASIC_320k

atm
osm

odl

av41092

c8_m
at11_I

ch8−8−b5

cont11_l

diego−M
M

−573x230k

GL7d19

lhr71
neos

patents

raefsky3

rail2586

rail4284

rajat31

rel9
relat9

rm
a10

Rucci1

sls sm
e3Dc

spal_004

stom
ach

torso1

tp−6
TSOPF_RS_b2383

venkat01

venkat50

wb−edu

wikipedia−20060925

0
50

0
10

00
15

00
20

00

Figure 4.16: CSB vs RCSR SpMV performance on M2, unsymmetric.

4.2.3 Experimental Comparison with CSB

Finally, Figures 4.15 and 4.16 compare the performance obtained with RCSR
and RCSRH to that of CSB. Since the CSB format (recall our brief description
in §2.2, or see Buluç et al. [BFF+09, § 8]) currently does not handle symmetric
matrices (or rather, symmetric updates), we can only compare the results for
unsymmetric ones. Due to space limitations, we report results for 8 cores only.
We skip matrix cage15 in the results (the one with biggest dimensions and
nonzeroes count), because CSB was unable to handle it (it needed more memory
than it was available).

On M4 (Fig. 4.15), we see that CSB performs better on tall matrices: rel9,
relat9, Rucci1, diego-MM-573x230k, contl11 l, as well as on a wide one: neos, and
square rajat31, wb-edu, atmosmodl, patents. RCSR and/or RCSRH prevail on
wide matrices: 12month1, c8 mat11 I, GL7d19, spal 004, rail2586, square ones:
av41092, lhr71, raefsky3, rma10, sme3Dc, torso1, venkat01, and a tall one: tp-6.
On M2 (Fig. 4.16), we observe exactly half of the matrices favouring CSB, and
half favouring RCSRH.

4.2.4 Conclusions From the Introduction of Short Indices

We have discussed simple modifications to our base sparse matrix format (RCSR)
which allowed usage of halfword indices. This modification exploits the hierar-
chical structure of RCSR and involves changes in the way that the recursive
subdivision is performed. As a result, we were able to achieve speedups between
10% and 25% on unsymmetric matrices (and up to 34% on symmetric ones)
on eight active cores; without substantially changing neither the SpMV algo-
rithm(s), nor the recursive matrix format. In some cases, the performance boost
was not possible because of complex interactions between the matrix structure
and the subdivision mechanism. For the same reasons, in some cases we have
observed a performance drop; mainly due to subdivision policy generating too
much recursion. From this, we conclude that the usage of short indices should
be pursued whenever possible, as the saving in memory traffic pays off especially
when many cores are active. However, we should investigate further cases where
excessive subdivisions result in growth (rather than drop) in index usage, and
find a way around the excessive subdivision. Also, subdividing with regard to
the underlying available threads will have to be considered. Moreover, a tech-
nique for parallelizing the execution of SpMV in cases of very large and very
sparse matrices should be addressed.

Separately, usage of some other appropriate (non CSR) format on selected

97

leaf submatrices (regardless of the index type size) needs to be investigated.
This could prevent excessive memory usage on submatrices where rows>nnz.

Finally, we would like to note that as a consequence of using the dense block
width/height as an index multiplier (recall from §1.2.4 or see Im et al. [IYV04a]),
dense blocking techniques allow leaf submatrices bigger than 216 while still using
16 bit indices.

4.3 Heterogeneous (COO/CSR) Leaves:RSB

4.3.1 Recursive CSR and Index Overhead

With RCSR/RCSRH, we (logically) organize a sparse matrix as a quad-tree
structure, with nodes consisting of submatrices arising from a recursive parti-
tioning into quadrants. While intermediate nodes are used only as a pointer
structure, leaf nodes hold actual subarrays with index and numerical values.
The SpMV algorithm described in §3.1 is independent from the actual format of
leaf matrices. It only assumes a coarse recursive partitioning in leaf submatrices.
Similarly to blocking techniques used in dense matrix computations (see for in-
stance, one of Gustavson’s works—[Gus97]), submatrices at the leaf level should
be sized (in terms of their memory footprint during the SpMV) in relation to
the cache sizes of the machine.

In this context, in §4.1, we have investigated a variation to the leaf matrices
format, obtained by converting some of the Compressed Sparse Rows (CSR)
leaves of a matrix to use 16 bit column indices (and thus, reducing the mem-
ory traffic). As motivated before, (and in the literature; e.g.: see Kourtis et
al. [KGK08]), techniques for saving memory bandwidth during computation are
particularly effective with many active cores. Here, techniques which may not be
optimal on a single core (because of a slight memory-bandwidth-to-computation
trade-off, in the form of pointer arithmetics) may show their potential when
working with multiple cores (where the memory traffic is heavier). As a motiva-
tion for our “16-bit” approach, we observe that after partitioning a large sparse
matrix (in the RCSR format), it is likely to have many of the leaf submatrices di-
mensioned less than 216. Thus, using a 16 bit (halfword) index type in their CSR
column indices arrays is possible, and could lead to savings in memory traffic.
We named this variant RCSRH. Obviously, for matrices dimensioned less than
216, the conversion to RCSRH is possible for all submatrices. The outcome of
our experiments (documented in [MFPT10c]; see §4.2) was encouraging: using
halfword indices by itself yielded up to a 25% floating point speedup (with a

saving in memory usage up to a 16%) on unsymmetric matrices, and 30% on
symmetric ones. However, in a number of cases, the RCSRH variant was not
helpful. One of the perceived reasons was that CSR itself does not always fit
into leaf submatrices, and thus we have decided to convert some leaf matrices
to the COOrdinate (COO) format. Let us discuss this change with more detail
in §4.3.2.

4.3.2 Recursive Storage Format with CSR and COO Leaves

In this section, we motivate quantitatively why and when storing some subma-
trices as COO instead of CSR could reduce index overhead, and the way we
have chosen to use COO to enhance RCSR.

A matrix is stored in the RCSR format as a quad-tree structure with CSR
(recall §1.2) submatrices at the leaf level of a recursive bipartitioning (recall
§2.3 or see [MFT+10]). To store an r × c matrix with n nonzeroes in CSR,
we use an array JA (of size n) with column indices, and a row pointers array
PA (of size r + 1), referencing rows in the JA array. Array JA stores column
indices for nonzeroes in a row-major order. The array of coefficients (V A) is
laid in the same order as JA. To store a matrix in a plain COO format, two
n-sized arrays for (row,column) indices (IA,JA) are required. By denoting as
I(r, n) the index space requirements for an r × c matrix (with n nonzeroes)

instance we have ICSR(r, n)
def
= 4(r+ 1) + 4n and ICOO(r, n)

def
= 4n+ 4n bytes.

Let us call CSRH the CSR format implementation with 16 bit JA indices,
and COOH, a COO format implementation with 16 bit IA and JA indices.

For these variants, we have ICSRH(r, n)
def
= 4(r + 1) + 2n and ICOOH(r, n)

def
=

2n + 2n bytes. This means that for some values of (r, n), COO/COOH would
use less indexing space than CSR/CSRH; specifically, ICOO(r, n) < ICSR(r, n)
when n < r + 1, and ICOOH(r, n) < ICSRH(r, n) when n < 2r + 2. For this
experiment, we modified the matrix constructor code to use CSRH whenever a
CSR submatrix is dimensioned less than 216. Similarly, we use COOH whenever
a COO submatrix is dimensioned less than 216; we choose to use COO when n <
r+1. We adopt COO/COOH as row-major sorted2 (so we have the same memory
access pattern of CSR for JA and V A arrays). In earlier sections (see §2.3
and §4.1), we have described the cutoff function δ as our heuristic regulating
subdivision into submatrices; in this section, we use slightly differing matrix
assembly criteria. While we still use the δh function from §4.1.1, here we limit
subdivisions by forcing each submatrix not to use more indexing space than a

2In §1.2 we called this variant COR.

99

fullword COO storage of it would require. The remaining rules for subdivision
are still the same as imposed by δh. We call the hybrid format resulting from
these modifications Recursive Sparse Blocks (RSB). With this layout, algorithms
for the random access/update of individual matrix nonzeroes as discussed in
§2.3.5 are still valid in between submatrices. But the presence of matrices in the
coordinate storage requires the implementation of specialized binary search code
for delimiting the individual rows boundaries first, and then column indices in
the COO arrays. Refer to Table 1.1 for the memory access patterns (and thus,
different computational complexity) of the random nonzero set and diagonal
extraction operations on individual COO leaves.

4.4 Experimental Evaluation of RSB

We structure the analysis of results as in the previous experiments. Note that for
brevity, we sometimes reference the k-threaded RSB as RSB -k. In most cases we
start by commenting on the 8-threaded performance, discussing the particularly
problematic cases first, and leaving the best performing cases discussion as last.

Please refer to §A.4 for a full description of the experimental setup we used.

4.4.1 Unsymmetric Matrices

For the unsymmetric matrices on M4, we observe an improvement when switch-
ing from RCSR to RSB in nearly all of the test set matrices; up to 67% on square
ones, and up to 33% on non-square ones (Fig. 4.17,4.18).

The only matrices “suffering” from the switch are: square av41092 and raef-
sky3 (Fig. 4.17), non-square c8 mat11 I and diego-smtxMM-573x230k, and two
borderline cases: rail2586 and sme3Dc.

On machine M2 (Fig. 4.19,4.20), we see improvements up to 128% for square
matrices, and 65% for non-square ones, and a single case of a performance drop:
a 3% fall for the non-square matrix cont11 l.

In Fig. 4.21,4.22,4.23,4.24 we observe index usage saving almost always. Out
of 24 non-symmetric matrices, we experience three cases where index usage
raises: square matrix patents (Fig. 4.21,4.23) and non-square matrices, rel9,
relat9 (Fig. 4.22,4.24). We note, however, that the effect of RSB is actually
an improvement of the performance on these matrices, notwithstanding the
increased index usage. Among these matrices, problematic cases remain: patents
performs better, but continues scaling poorly, (remaining the “slowest” of our

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

sm
e3Dc

torso1

venkat01

wb−edu

0
10

00
30

00
50

00

Figure 4.17: SpMV performance on M4, square matrices.

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

12m
onth1

c8_m
at11_I

cont11_l

diego−M
M

−573x230k

GL7d19

rail2586

rel9
relat9

Rucci1

spal_004

tp−6

0
50

0
15

00
25

00
35

00

Figure 4.18: SpMV performance on M4, rectangular matrices.

101

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

sm
e3Dc

torso1

venkat01

wb−edu

0
50

0
10

00
15

00

Figure 4.19: SpMV performance on M2, square matrices.

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

12m
onth1

c8_m
at11_I

cont11_l

diego−M
M

−573x230k

GL7d19

rail2586

rel9
relat9

Rucci1

spal_004

tp−6

0
50

0
10

00
15

00

Figure 4.20: SpMV performance on M2, rectangular matrices.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

sm
e3Dc

torso1

venkat01

wb−edu

0
2

4
6

8
10

Figure 4.21: Index usage (bytes per nonzero) on M4, square.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

12m
onth1

c8_m
at11_I

cont11_l

diego−M
M

−573x230k

GL7d19

rail2586

rel9
relat9

Rucci1

spal_004

tp−6

0
2

4
6

8

Figure 4.22: Index usage (bytes per nonzero) on M4, rectangular.

103

by
te

s/
nn

z

RSB1 RSB2 RSB4 RSB8

atm
osm

odl

av41092

lhr71
patents

raefsky3

rajat31

sm
e3Dc

torso1

venkat01

wb−edu

0
2

4
6

8

Figure 4.23: Index usage (bytes per nonzero) on M2, square.

by
te

s/
nn

z

RSB1 RSB2 RSB4 RSB8

12m
onth1

c8_m
at11_I

cont11_l

diego−M
M

−573x230k

GL7d19

rail2586

rel9
relat9

Rucci1

spal_004

tp−6

0
2

4
6

8

Figure 4.24: Index usage (bytes per nonzero) on M2, rectangular.

entire test set); relat9 suffers from poor scaling, too (especially on 8 cores M2);
rel9 continue not scaling at all.

These matrices have a feature in common: a very low nonzeroes/row ele-
ments ratio: 2.39 for rel9, 3.15 for relat9 (see Table A.12) 3.97 for patents (see
Table A.11). Although for such matrices one cannot expect high efficiency for
either CSR or COO formats, we have realized why this is also the case for our re-
cursive format (see the previous sections), so now we present only the particular
case for RSB.

Although very poorly performing already with 1 thread, patents scales up
to no more than 4 threads. In fact patents is assembled in 37 COO leaves,
regardless of the thread count. When working with 8 threads, we observe that
scaling is inhibited: this means that particular partitioning leaves a number
of threads starving, while most of row intervals are locked by other threads.
This is a situation occurring when the thread count approaches the number of
submatrices in disjoint row intervals (see Fig. 4.25); and thus threads contend
for available row intervals to operate on. In the current formulation of RSB,
further partitioning of this matrix is not allowed, for it does not have enough
nonzeroes per row. On M2, the case for patents is similar: while on 1,2,4,8
threads, the matrix is partitioned respectively into 13,25,37,37 COO leaves.

The cases of rel9 and relat9 (Fig. 4.18,4.20) are similar. Since relat9 has a
little higher nonzeroes/row count than rel9, it succeeds in scaling in a limited
way (up to 30 COO leaves, on both machines), but rel9 gets partitioned in 7
leaves only, in all cases. Therefore, for rel9, more than 2 threads contend for
row locking on 7 submatrices, with no possible scaling. Notice, however, that
RSB is capable of allowing dual threaded parallelism in these very sparse cases,
whereas RCSR was not.

The cases we have just discussed are worst/limit cases, and as such are not
the primary target of our modifications, so we tolerate them here, and use them
as means for comparison.

Although quite different, two matrices (sme3Dc, raefsky3) suffer similar
problems, when instantiated as RSB on M4. That is, while they are well-
performing on RCSR and loosing index overhead from the RSB switch, they
also get partitioned into less leaves, giving rise to the same SpMV scalability
problem. In fact while RCSR-8 partitions these matrices respectively into 115
(113 CSRH, 2 COOH) and 94 (CSRH) leaves, RSB -8 produces 16 (all CSRH)
and 13 (11 CSRH, 2 COOH) leaves. Given the lock-based nature of our SpMV
algorithm, and the distribution of submatrices, RSB -8 suffers from contention
problems on both matrices. It is interesting to note that on M2, these matrices
get subdivided respectively in 115 and 94 leaves, and we observe in Fig. 4.19

105

Figure 4.25: On the left, matrix patents as partitioned on M4. On the right
(widened, for viewing convenience) diego-smtxMM-573x230k on M4. Both are
partitioned with the heuristic updated for RSB.

that this suffices to scale and experience, respectively, a 7% and a 6.7% improve-
ment. Index overhead shifts from 4.44. to 2.55 bytes/nonzero for sme3Dc, and
from 4.28 to 2.34 bytes/nonzero for raefsky3.

Matrix av41092 on M4 experiences the same problem sme3Dc and raefsky3
did: insufficient partitioning. While M4 partitions this matrix in 10 (9 CSRH,
1 COOH) submatrices only, M2, due to its smaller caches, partitions it in 72
leaves (64 CSRH, 8 COOH). So, the halving in index overhead experienced on
M4 (from 4.65 to 2.27 bytes/nonzero) could not bring advantage to RSB -8,
while on M2, the 42% index saving (from 4.5 to 2.61 bytes/nnz) allows for
scaling and a modest 3% performance increase.

The remaining three cases with a missing improvement are non-square ma-
trices c8 mat11 I, diego-smtxMM-573x230k, and rail2586 (Fig. 4.18). Matrix
c8 mat11 I, alike to the matrices we have seen before on M4, suffers from poor
partitioning, here: RSB partitions it in respectively 1,4,10,13 leaves for 1,2,4,8
threads. On 8 threads, the 13 leaves are not enough to ensure the parallel op-
eration of all the threads, thus leaving some of them starving. Similarly to the
previous cases, M2 divides the matrix in much more leaves, thus avoiding the
scaling problem.

by
te

s/
nn

z

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
nd24k

s3dkq4m
2

0
1

2
3

4
5

6

Figure 4.26: Index usage (bytes per nonzero) on M4, symmetric.

The case for matrix diego-smtxMM-573x230k is different (and interesting).
On M4, this matrix performs best as RCSR, while on M2, best as RSB. On
both machines, though, while not scaling up to 8 threaded RCSR, it scales
(although very slightly) for RSB, up to 8, but poorly. Poor scaling is evident:
RSB -8 on M4 is only 88% faster than RSB -1; on M2, only 123%. By looking
at the number of submatrices, we could not say their number is too low. It is
only after inspecting the distribution of submatrices (see Fig. 4.25), that we
notice a big unbalance: actually, most of the submatrices are located on the top
of the matrix, and it seems that RSB arranged submatrices in “block rows”.
Given the row-lock-based nature of our SpMV algorithm, such a distribution is
enough to destroy the parallelism of the computation on this matrix. Here, after
completing the bigger-dimensioned submatrices across various row intervals of
the matrix, threads will try to acquire a lock on the intervals located on the
upper border, with no success for most of them: only a few of them will be able
to work at a time, on the upper submatrices. Contention will last during the
whole computation for most of the threads, then, because our current SpMV
algorithm has no mechanism for concurrent update of a single subvector.

Matrix rail2586 constitutes another special case. For being wide, it fits par-
ticularly well when stored in a row-oriented storage as CSR. However, for having
its nonzeroes scattered quite uniformly around the matrix, it would end up hav-

107

by
te

s/
nn

z

RSB1 RSB2 RSB4 RSB8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
nd24k

s3dkq4m
2

0
1

2
3

4
5

6

Figure 4.27: Index usage (bytes per nonzero) on M2, symmetric.

ing very sparse submatrices, if it had not as much as 3097 average nonzeroes per
row. But it happens that for being so wide, the proper introduction of CSRH
leaves is only possible after a certain number of subdivisions. On M4 (Fig. 4.26),
it happens that there are not enough subdivisions for switching much of the sub-
matrices to CSRH. So, the use of RSB for rail2586 on M4 does not reduce the
index overhead significantly (it remains at about 4 bytes per nonzero), and
the performance remains the same (notwithstanding the submatrices reduction:
from RCSR’s 352, to RSB -8’s 55). For architectural reasons, RSB on M2 ends
up partitioning the matrix more finely, and thus falling to switch to CSRH in
335, out of the 352 leaves of RSB -8. The matrix is thus partitioned in number of
matrices which is the double of RCSR’s. However, in this case, the performance
gain expected from RSB is negligible: less than 1%. We conjecture that the
flat distribution of submatrices in the matrix, and its considerable width, cause
a considerable overhead to the memory subsystem, which in turn is forced to
continuously load elements from the right-hand side vector, which would barely
fit in the cache.

We notice that some matrices gain a considerable speedup from the RSB
representation: rajat31 (56%), lhr71 (17%), torso1 (18%) on M2 (Fig. 4.20),
venkat01 (67%), cage15 (50%) on M4 (Fig. 4.18), wb-edu on both (68% on M4,
43% on M2). The assembled instances of these matrices as RSB differs from

RCSR, for the relevant number of COO/COOH submatrices. On M2, rajat31
gets partitioned in 1534 leaves, of which 896 COOH, and 126 COO; wb-edu in
4336 leaves, of which 2511 COOH, 254 COO; torso1 in 357 leaves, of which 39
COOH; lhr71 in 87 leaves, of which 34 COOH. In all these cases, index overhead
is cut down approximately in a half. On matrices rajat31 and wb-edu, index
overhead falls down respectively from 12.3 to 3 bytes/nnz and from 11.15 to
3.12 bytes/nnz. This means that RSB cures cases where RCSR alone produced
subdivisions abusing from CSR leaves; that is, producing CSR leaves with less
nonzeroes than rows. The case for matrix cage15 on M4 is alike, in that it
gets partitioned in 751 leaves, 132 of which are COO, 316 COOH, 6 CSR, 297
CSRH. With RSB, this configuration of cage15 saves approximately 30% index
overhead (from 6.3 bytes/nonzero), which is not much compared to other cases.
So probably, the gain is due to the fuller submatrices (RSB -8 assembles 751 of
them; RCSR as much as 4457). Performance gain on torso1 is probably due only
to index overhead saving: in RSB -8 on M4, it gets partitioned in 59 CSRH leaves
only, (from 176 CSR), saving 64% of indexing overhead (from 4.6 bytes/nonzero,
Fig. 4.21), which is quite good.

4.4.2 Symmetric Matrices

Bar plots in Fig. 4.29 and 4.28 present the comparative performance results of
RCSR and RSB for symmetric matrices. We observe performance enhancements
nearly in all cases. There are three exceptions, though: crankseg 1, ct20stif, F1
on M4. We comment these exceptions first, and the remaining cases next.

On M4, matrix F1 in RSB (Fig. 4.29) does not scale from 4 to 8 threads.
On less than 8 threads, F1 is processed faster with RCSR; e.g.: with 1 thread,
F1 gets partitioned by RSB in 10 submatrices only, all fullword CSR. But
with 8 threads, RSB partitions F1 in 72 leaves, of which 70 are CSRH and
2 COOH. With RCSR, a number of 573 leaves were obtained, which is much
more. Given the higher number of subdivisions, load balancing in RCSR ran for
sure smoother, while RSB did fall in a lock contention problem here, it seems.
Please recall (see §3.1) that our symmetric SpMV implementation variant incurs
in a higher locking overhead than unsymmetric. On M2, the situation is almost
reversed: for 8 cores, it is RSB that partitions F1 in more leaves (573: 504
CSRH and 69 COOH), while RCSR divides the matrix in 278 leaves only. The
index overhead of RCSR is quite high on F1: 5.08 bytes/nnz on M2, 5.4 on
M4; on RSB it is always less than this, on both machines. However, the RSB
index overhead depends on the threads count: on M2 (Fig. 4.27) with more
threads, the overhead tends to grow too, from 2.6 to 3.3 bytes/nnz, suggesting

109

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
nd24k

s3dkq4m
2

0
50

0
10

00
15

00
20

00
25

00
30

00

Figure 4.28: SpMV performance on M2, symmetric matrices.

M
F

lo
ps

/s
ec

RCSR1
RCSR2

RCSR4
RCSR8

RSB1
RSB2

RSB4
RSB8

af_shell10

BenElechi1

bone010

crankseg_1

ct20stif

F1 fcondp2

kkt_power

ldoor
nd24k

s3dkq4m
2

0
20

00
40

00
60

00
80

00

Figure 4.29: SpMV performance on M4, symmetric matrices.

that further subdivisions could degrade performance. On the other hand, on
M4, when going from 1 to 8 threads, this overhead decreases from 4.25 to
2.52 bytes/nnz (Fig. 4.26). These observations suggest us that the performance
improvement over 1-core RCSR (on both M4 and M2) is due to less index
overhead, which itself is a consequence of less submatrices fragmentation. We
believe that some optimum partitioning for 8 cores F1 is between all of these
four instances of RCSR/RSB on M2/M4; that is, the algorithm should have
partitioned F1 less coarsely on RSB/M4, more coarsely on RCSR/M4, and so
on.

The cases for matrices ct20stif and crankseg 1 (still on M4) are different.
With ct20stif we observe that 2-threaded RSB fails from partitioning, thus cut-
ting off two-cores parallelism completely (Fig. 4.29). On more cores the heuristic
succeeds partitioning the matrix, but too coarsely to gain a sufficient workload
balance. Note that this matrix is among the smallest in our test set (1.3 · 106

nonzeroes), stressing the limit of our rule of thumb (sizing matrices around the
cache sizes). On both M4 and M2 machines, index usage for ct20stif keeps very
low: for RSB it ranges from 2.27 to 2.52 bytes per nonzero, coming from RCSR’s
approximate 4.5. With an analogy to the previous case, on machine M2, par-
titioning is finer than on M4, from the single thread case on (1-threaded RSB
partitions ct20stif to 7 submatrices), and an adequate workload balancing fol-
lows. Thus with ct20stif on M2, we do not loose the 8 threaded case, and
RSB ’s performance is higher than RCSR’s. Here, the sparser leaf submatrices
are assembled as COOH (2 out of 7 on 8 cores M4, 2 out of 60 on M2), the
remaining ones in CSRH. Notice that both F1 and ct20stif matrices had more
than 25 nonzeroes/row, which is quite sufficient to achieve good results with
RCSR/RSB. Matrix crankseg 1 is a little bit sparser (10 nnz/row). It suffers
from the same poor partitioning problem on M4, having respectively 3,10,16,39
leaves for 1,2,4,8 threads, and loosing 30% of performance on 8 threads. On
the other hand, on M2, matrix crankseg 1 performs quite well, achieving an
improvement to RCSR. The improvement itself is about 21% on 8 cores, when
the matrix is partitioned in 37 COOH and 202 CSRH submatrices.

After having discussed the problematic cases, let’s look at the remaining
ones.

In one case there is almost no change: nd24k on M4 (Fig. 4.29). Here, RCSR
partitions the matrix in 503 CSR leaves, RSB in 87 CSRH leaves. The index
overhead (Fig. 4.26) gets almost halved (from 4 bytes bytes/nonzero). We are not
aware of the reason for the missing performance increase, here, but note that this
is our symmetric matrix with the higher nnz/row count (199, see Table A.10).
On M2 (Fig. 4.28), the same matrix witnesses a slight (5%) speedup, while being

111

partitioned by RSB in 503 (all CSRH, except 5 COOH ones) pieces, and 278
ones by RCSR. The index overhead (Fig. 4.27) similarly to that of M4, halves
from RCSR (4.2 bytes/nnz) to RSB (2.1 bytes/nnz). We conjecture that the 87
leaves on M4 somehow limited parallelism, but we would need to investigate
further to confirm this.

In one case, on M4, RSB performance boosts up as high as 66%, when
compared to RCSR: it is for matrix s3dkq4m2 (Fig. 4.29). Here, RCSR partitions
in 127 leaves, while RSB in 15 only (8 CSRH, 7 COOH). We observe the index
overhead (Fig. 4.26) is almost halved, switching from RCSR to RSB (for > 1
threads). We deem that this speedup is due to a case in which the matrix offers
caching potential (the whole result vector and a matrix portion): on M2, where
the L3 cache is considerably smaller than on M4, the performance of s3dkq4m2
improves by only 2%, passing from 63 leaves of RCSR to 120 CSRH and 7 COOH
leaves of RSB. Performing a run with cold caches (that is, making sure that any
location caching the matrix or the involved vectors gets overwritten between
each SpMV), on M4 the performance of RSB is approximately 7% lower, while
on M2 it made no difference (and the boost becomes 55%, rather than 66%).
Note that the smallest symmetric matrix in the test set is not s3dkq4m2 but
ct20stif, which we have commented before.

When switching from RCSR to RSB on M2 (Fig. 4.28), we observe speedups
in all cases. Probably, L3 cache on M2, smaller than on M4, induced too coarse
partitionings, thus limiting the scalability of our symmetric SpMV.

We can now comment the cases where the biggest improvement was observed:
af shell10 (30%), BenElechi1 (29%), bone010 (24%), fcondp2 (20%), ldoor (19%)
on M4 (Fig. 4.26), and fcondp2 (28%), crankseg 1 (21%), ldoor (16%), F1 (12%)
on M2 (Fig. 4.27). For af shell10 on M4, we observe that RSB instantiates 255
submatrices (192 CSRH, 48 COOH, 15 COO), while RCSR used to instantiate
1534 CSR leaves. This matrix is also the one to experience the higher saving in
index overhead: from 5.22 to 2.5 bytes per nonzero (more than 50%, Fig. 4.26).
Matrix BenElechi1 gets partitioned by RSB in 63 leaves: 32 CSRH, 30 COOH,
1 COO; by RCSR in 382 CSR matrices. Index usage (Fig. 4.26) halves: from
4.66 to 2.25 bytes per nonzero. Similarly to the af shell10 case, we experience
a smaller number of leaf matrices, a more appropriate leaf matrix selection,
and a consequent reduction in indexing overhead. On M2 (Fig. 4.28), the same
matrix improves only by 1.6%. By looking at its partitioning, we notice that
it is partitioned in 127 leaves by RCSR, which is much less than RSB ’s 255
leaves (238 CSRH, 16 COOH, 1 COO). For bone010, RCSR assembles 1316
CSR matrices; RSB assembles 170 CSRH, 2 CSR, and 5 COO. Index usage is
reduced down from 4.6 to 2.5 bytes/nnz (Fig. 4.27). On M2, RSB assembles

1054 CSRH, 279 COOH, and 5 COO submatrices, while RCSR allocates 630
CSR leaves (index overhead shifting from 4.53 to 2.55 bytes/nonzero). Again, it
seems the partitioning proceeded too deeply. Matrix fcondp2 is partitioned in 31
leaves (19 CSRH, 1 CSR, 11 COOH) with RSB, and with RCSR in 255 leaves.
Index overheads falls from 4.63 to 2.42 bytes/nnz. On the same matrix, on M2
the improvement is even higher, this time. Here, RSB partitions in 257 leaves
(182 CSRH, 75 COOH), while RCSR in 127 leaves only. Index overhead falls
from 4.56 to 2.5 bytes/nonzero. So, in contrast to the preceding cases, matrix
fcondp2 benefits from increased subdivision, on M2. Matrix ldoor is partitioned
in 157 leaves (122 CSRH, 5 CSR, 26 COOH, 4 COO, 3.14 bytes/nnz) by RSB,
and 789 leaves by RCSR (5.47 bytes/nnz, Fig. 4.26). On M2, the performance
gain is smaller than on M4 (16%, rather than 19%). Partitioning of ldoor,
here, produces 804 (471 CSRH, 329 COOH, 4 COO) submatrices, while RCSR
produces 431 leaves. Also index overhead falls more gently: from 5.30 to 3.36
bytes/nnz.

We conclude by observing that there is a strong correlation between the
index saving and performance gain: milder index savings on M2 showed milder
performance improvements, while bigger index savings on M4 were accompanied
by higher improvements.

4.4.3 Comparative Analysis

Let us now look at the performance of all matrices as RCSR, RCSRH, and RSB,
using 8 threads. For unsymmetric matrices, we also give performance results for
the CSB prototype. Unfortunately, we had to skip matrix cage15 (the one with
the highest nonzeroes count), because CSB was unable to instantiate it (the
CSB implementation needed more memory than the 24 GB available on M4).

We observe that for M2 (Fig. 4.31): matrices which favour RSB most (over
CSB) are c8 mat11 I,spal 004,wb-edu; one matrix looses against RCSR (cont11 l);
the majority of RSB cases is faster than RCSR (19 matrices out of 20). Summa-
rizing, RSB performs faster than CSB (and is also the fastest among the four
cases) in 7 cases out of 20. CSB is the fastest in 12 cases; in one case it is faster
than RSB, but not the fastest one.

On M4 (Fig. 4.30) we observe that: RSB is much faster than CSB on wb-edu
and venkat01; 6 matrices seem to perform very similarly in both CSB or RSB ;
the remaining ones perform better in one of the two formats. Some matrices
loose performance in RSB, over RCSR: matrices av41092,c8 mat11 I,cont11 l;
(slightly) diego-smtxMM-573x230k,sme3Dc; other matrices favour RSB over RCSR:
about 15, out of 20.

113

M
F

lo
ps

/s
ec

CSB8 RCSR8 RCSRH8 RSB8

12m
onth1

atm
osm

odl

av41092

c8_m
at11_I

cont11_l

diego−M
M

−573x230k

GL7d19

lhr71
patents

raefsky3

rail2586

rajat31

rel9
relat9

Rucci1

sm
e3Dc

spal_004

torso1

tp−6
venkat01

wb−edu

0
10

00
30

00
50

00

Figure 4.30: Results for 8 cores on M4, comparing CSB, RCSR, RCSRH, and
RSB (unsymmetric matrices).

M
F

lo
ps

/s
ec

CSB8 RCSR8 RCSRH8 RSB8

12m
onth1

atm
osm

odl

av41092

c8_m
at11_I

cont11_l

diego−M
M

−573x230k

GL7d19

lhr71
patents

raefsky3

rail2586

rajat31

rel9
relat9

Rucci1

sm
e3Dc

spal_004

torso1

tp−6
venkat01

wb−edu

0
50

0
10

00
15

00

Figure 4.31: Results for 8 cores on M2, comparing CSB, RCSR, RCSRH, and
RSB (unsymmetric matrices).

For space reasons, we omit figures showing comparative performance for
symmetric matrices on RCSR, RCSRH, RSB formats, but include some general
comments.

On M2, we notice RSB as the fastest format 5 times out of 12; on M4, 4
times. Here, RCSRH is the fastest in 7 cases; in all cases, very near to RSB. On
M4, we see a similar situation, but notice a performance degradation in some ad-
ditional cases: they are due to the poor partitioning problem discussed in §4.4.2.
In no case RCSR was the fastest format for symmetric matrices (exception made
for the poorly scaling three matrices) on M4: (crankseg 1, ct20stif, F1).

4.4.4 Conclusions From the Introduction of COO Leaves

In these sections, we have shown a possible improvement of our BLAS-oriented
recursive storage for sparse matrices. We have found that by using index com-
pression and format diversification techniques, we can improve the floating point
performance of SpMV. We have also found that for unsymmetric matrices, the
performance of our modified format (RSB) is comparable to that of a scalable
sparse matrix format (CSB : currently for unsymmetric only). In the compari-
son with RCSR and CSB, we noticed some particular cases that expose weak
points of both RSB and RCSR; consequently allowing us to identify room for
further improvement: (i) To redefine our format in order to obtain some esti-
mate on the parallelism expected from a given partitioning (in §4.4.2, we noticed
that despite the apparently adequate partitioning, some instances of matrices
(e.g.: smaller symmetric) did not scale on 8-threaded SpMV). (ii) To modify
the SpMV algorithm to be more parallel, by working around the need for row
locking (e.g.: by using temporary vectors, as CSB does [BFF+09, § 4], although
this may be challenging in our case). (iii) While our primary interest is focused
on bigger matrices, tuning the partitioning algorithm for small matrices could
prove useful to ensure parallelism in these cases, too. (iv) Properly subdividing
matrices which are big, but with an extremely low nonzeroes/row ratio would
be challenging (and fruitful), as well.

Some ideas we have introduced should be developed further. For instance,
a more aggressive form of tuning could diversify index types at the leaf level
and continue using traditional CSR or COO layouts, when profitable. Probably
forthcoming architectures (with much higher number of cores, and even higher
risks for stall due to higher memory latencies and longer instruction pipelines)
would render such approaches advantageous.

In summary, we can state that our work illustrates that combinations of
hierarchical indexing and index compression techniques can be useful to achieve

115

high efficiency of computing on sparse matrices (on general purpose hardware).
In this light, we see the RSB format as a candidate format for a complete
multicore sparse BLAS implementation (that is, support for symmetric storage,
solve operations, parallel transposed SpMV, and so on).

4.5 Closing Remarks

In this chapter, we have inquired about two modifications to the RCSR for-
mat, with experiments for the assessment of the impact on SpMV performance.
The first change did not attempt at substantially changing any of the core algo-
rithms involved; instead, it focused in impacting mainly on the memory footprint
of SpMV, by simply employing a shorter numerical integer type for the column
indices of the CSR leaves. The experiment succeeded, in that (see conclusions in
§4.2.4) we found confirmation that reducing memory traffic improves efficiency,
in spite of using potentially some extra integer arithmetics (for conversions and
pointer arithmetics). In our second modification (see conclusions in §4.4.4), we
go further applying even more the idea of saving memory bandwidth: we estab-
lished a lower sparsity threshold to decide when using the traditional COO (in
its row-major variant) rather than CSR. In both modifications, we had to pay
attention to the way heuristics in the matrix build work: the potential paral-
lelism and memory footprint of SpMV for RSB (the resulting, hybrid format)
depend on these. These are two reasons why the next chapter is devoted to de-
veloping a flexible procedure for building RSB matrices. The remaining reasons
for concentrating on the build process is the need for shared memory parallel
build algorithms: this is a prerequisite for a completely parallel Sparse BLAS
candidate format.

5
Building RSB Matrices

Overview

We have described basic rules for the construction of a quad-tree-based recur-
sive CSR representation (RCSR) in §2.3.4, §2.3.3 (also published in [MFT+10]).
Here, we give a complete procedure for building (or assembling, in jargon) ma-
trices in the RSB format; that is, the original quad-tree recursive representation,
with applied the modifications from §4.

This chapter will go through a literature introduction in §5.1, then state
some properties of the quad-tree structures of interest to RSB in §5.2, and
then exposing our main idea for RSB matrices assembly in §5.3 and §5.4. An
extensive commentary to the performance evaluation of the proposed algorithms
implementation is presented in §5.4.1. In §5.5 we draw some conclusions useful
for future work. The chapter terminates with the sketch of an enhanced RSB
building procedure, in §5.6.

5.1 Literature Overview

In §2, we gave a brief historical summary of hierarchical data structures for
the representation of sparse matrices. Interestingly enough, while hypermatrix-
based approaches have been applied to sparse matrix computations, almost no
research has been reported as to what concerns assembly of such matrices. We
were able to find a research article in a spirit similar to ours in [GL09]. There,
Gottschling and Lindbo document algorithms and discuss patterns of usage in

117

the assembly of sparse matrices in the context of their serial “MTL” package.
Our discussion is narrower in scope but more in-depth than theirs, as we are
concerned with a single pattern of construction: the conversion of COO input
arrays to RSB, to be used on multi-core computers.

5.2 Some Properties of the Quad Trees Used in RSB
Matrices

Given an m× k matrix A, we build a graph structure (quad-tree) q with nodes
corresponding to quadrant submatrices. The four quadrants are sized respec-
tively (in clockwise order, from the upper left) dm2 e×d

k
2 e, d

m
2 e×b

k
2 c, b

m
2 c×d

k
2 e,

and bm2 c × b
k
2 c. This subdivision (or bipartition) is applied recursively to the

quadrants; quadrants with no nonzero are not represented. Only leaf nodes are
associated with actual data arrays, while inner ones contain only pointers. A
simple cutoff function is used to balance the tree in order to obtain leaf subma-
trices with neither too many, nor too few nonzeroes. Fig. 5.27 depicts a matrix
subdivided into RSB.

Let us now review some properties of our quad-trees, which will be useful
during the discussion of matrix assembly.

Let us call qh the complete quad-tree of height h; that is, the quad-tree

having Ni(qh)
def
=
∑h−1
i=0 4i intermediate nodes and Nl(qh)

def
= 4h leaf nodes, We

indicate with H(q) the height of quad-tree q. We assume that any quad-tree
could be constructed by adding nodes to the singleton quad-tree q0 (the one
which is associated to the entire matrix). Let Q be the set of quad-trees with
height ≥ 1. We call q′ a k−derivation (or derivation, for short, if we ignore k) of
quad-tree q, if q′ can be built from q, by making one leaf an intermediate node,
and adding 1 ≤ k ≤ 4 leaves. We call q′ an indirect derivation of quad-tree q,
if q′ can be built from q after a sequence of derivations. Observe that if q′ is a
k−derivation of q, then Ni(q

′) = Ni(q) + 1, and Nl(q
′) = Nl(q) + k − 1.

Property 1. For any q among the possible quad-trees with height 1, we have
Ni(q)
Nl(q)

≥ 1
4 , and Ni(q1)

Nl(q1) = 1
4 .

Proof. By explicit enumeration of possible cases.

Property 2. For any q ∈ Q with H(q) > 1,we have Ni(q)
Nl(q)

≥ 1
4

Proof. Let q be a quad-tree having Ni(q)
Nl(q)

< 1
4 , necessarily a derivation of a

quad-tree q′ having Ni(q
′)

Nl(q′)
≥ 1

4 . In the case q is a k−derivation of q′, indicating

i = Ni(q
′), l = Nl(q

′), we have i
l ≥

1
4 and i+1

l−1+k <
1
4 . But this implies 4i− l ≥ 0

and 4i − l < k − 5, which is impossible, for 1 ≤ k ≤ 4. In the case q is an
indirect derivation of q′, it must be a derivation of some quad-tree q” having
Ni(q”)
Nl(q”) <

1
4 ≤

Ni(q
′)

Nl(q′)
, but existence of such q” is impossible, as we have seen.

If some internal node of q has one child only, we call q degenerate (with some
terminology abuse; see Knuth [Knu97, Sec. 2.3.4.5]).

Property 3. For any sparse matrix M with no empty rows, if its corresponding

quad-tree q is not degenerate, we have Ni(q)
Nl(q)

≤ 1.

Proof. Since M has no missing rows, it has some leaf node of q covering each
row interval. Since q is not degenerate, at each level > 1, there are at least
two nodes, or no node at all. Therefore, quad-tree q can be built by inserting
additional k ≥ 0 leaves to some binary tree q′. A non degenerate binary tree q′

has Nl(q
′) = Ni(q

′) + 1, So we have Ni(q)
Nl(q)

= Ni(q
′)

Ni(q′)+k+1 , whose upper limit is 1,

for k = 0, and Ni(q)→∞.

Property 3 guarantees that for non degenerate quad-trees, there will be no
more internal nodes than leaves; nevertheless, we do allow degenerate trees in
come of our RSB matrices, since this simplifies some implementation details.

5.3 Overview of COO to RSB Conversion

In §5.4, we will describe in detail our approach for the conversion of an m × k
matrix A with nnz nonzeros, expressed in (row-major sorted) COO (IA, JA
coordinate arrays and the VA numerical values array; see §1.1) into RSB order.

In this section, we sketch briefly the whole process, to allow the impatient
reader to grasp the main ideas behind it.

The goal of the proposed procedure is to build a quad-tree structure for
A, allocating a small number of auxiliary structures for the submatrix nodes,
and reusing input arrays IA, JA,VA. We require input elements in row major
order, both because the user application often produces input in that order, and
because it gives us a starting point for matrix assembly.

The core of our procedure essentially lies in two stages: subdivision and
shuffle. The first stage analyzes the input arrays, collects structure information,

119

A =

0.66667(1) 0.36656(2) 0.30011(3) 0.36656(4) 0.30011(5)

0.10004(6) 0.53341(7) −1(8) 0.20007(9) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(13) 0.10004(14) 0 0.28331(15) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

IP=(1 6 10 13 17 21)

Figure 5.1: Row pointers creation, during RSB assembly of matrix cage3*. Ma-
trix entries displayed with a bold typeface are the ones pointed by the row point-
ers array. The last array entry points to the first index after the last nonzero;
that is, nnz + 1.

and produces a candidate quad-tree for a partitioning in submatrices. The second
stage shuffles the input COO arrays in an order which is Zb (recall §2.3.3) among
submatrices, but still row-major at the submatrix level.

As an example, we illustrate the first stage with three pictures: Fig. 5.1
Fig. 5.2. Fig. 5.3, and then the second stage in Fig. 5.4.

A =

0.66667(1) 0.36656(2) 0.30011(3) 0.36656(4) 0.30011(5)

0.10004(6) 0.53341(7) −1(8) 0.20007(9) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(13) 0.10004(14) 0 0.28331(15) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

LP=(1 6 10 13 17 21)
RP=(4 9 12 15 19 21)

Figure 5.2: First vertical split computed on matrix cage3*. Left and right point-
ers arrays are shown. Notice the boldface entries in the matrix; these are the
first entries on their respective rows, in the sparse CSR representation.

The very first step (Fig. 5.1) consists in filling a row pointers array with a
count of elements on each row.

With this information, quadrants for subdivision are identified (Fig. 5.2) and
if possible, compressed sparse rows info is produced for quadrants (Fig. 5.3).

After these steps, a quad-tree structure is already built, and knowledge about
the location of the actual data arrays in the input is ready. Therefore, input
arrays are shuffled in-place and transformed in a way to obtain the whole matrix
laid in the RSB layout.

A =

0.66667(1) 0.36656(2) 0.30011(3) 0.36656(4) 0.30011(5)

0.10004(6) 0.53341(7) −1(8) 0.20007(9) 0

0.12219(10) 0 0.5777(11) 0 0.24437(12)

0.05002(13) 0.10004(14) 0 0.28331(15) 0.18328(16)

0.06109(17) 0 0.12219(18) 0.15006(19) 0.27224(20)

IATMP=(1 6 10 13 4 9 12 15 0 0 0 0 0 0 0 0 0 0 0 0)
NV=(8 4 4 4)

Figure 5.3: Information from the first matrix split is collected as compressed
rows pointers, and stored in a nnz -sized array. Notice that many row pointers
are set to zero; this is because their respective submatrices CSR representation
does not fit in their array portion, which is proportional to their nonzeroes
count. These matrices will be copied as COO in a later phase.

Our sample matrix in the RSB layout is shown in Fig. 5.4.
Section §5.4 will deal with all the details of the proposed procedure.

5.4 Assembling RSB from Sorted COO

Unless otherwise stated, in the following, by matrix we will refer to A only, and
denote as a submatrix any of the quadrant submatrices obtained by recursive
bipartitioning (defined in §5.2). In the algorithms we expose, we assume no
duplicates in the input, although duplicates actually occur in publicly available
matrices (like ones from the University of Florida sparse matrix collection; see
Davis [Dav10]), and thus should be dealt with1.

There are three stages of assembly: first the subdivision ofA in COO to RSB s,
where the input is repeatedly scanned, and a quad-tree structure is built; then
the shuffling of rows laid in COO order to the rows of RSB submatrices (Fig. 5.12,
5.13), and finally compression of indices in RSB Leaf Switch (Fig. 5.14). Ac-
cordingly, we break down the RSB assembly pseudo code into three listings,
called from procedure COO to RSB, in Fig. 5.5.

Procedure COO to RSB s (Fig. 5.6), performs a cycle, identifying bounds
for candidate submatrices. This information is stored in auxiliary arrays L,M,R.
A row pointers array P is constructed (line 5), kept and returned for later usage.
At each iteration, the largest open submatrix s (in terms of number of nonzeroes)

1We do not include here algorithms and timings for duplicate/zeros removal, although we
have implemented and applied them in our experiments.

121

A =

0.66667(1) 0.36656(2) 0.30011(3)

0.10004(4) 0.53341(5) −1(6)

0.12219(7) 0 0.5777(8)

 0.36656(9) 0.30011(10)

0.20007(11) 0

0 0.24437(12)

(

0.05002(13) 0.10004(14) 0

0.06109(15) 0 0.12219(16)

) (
0.28331(17) 0.18328(18)

0.15006(19) 0.27224(20)

)

IARSB=((1 4 7 9 0 0 0 0)(1 1 2 3)(1 1 2 2)(1 1 2 2))
JARSB=((1 2 3 1 2 3 1 3)(1 2 1 2)(1 2 1 3)(1 2 1 2))
V ARSB=((0.66667 0.36656 0.30011 0.10004 0.53341 -1 0.12219 0.5777)(0.36656
0.30011 0.20007 0.24437)(0.05002 0.10004 0.06109 0.12219)(0.28331 0.18328
0.15006 0.27224))

Figure 5.4: After shuffle, cage3* is represented in the RSB layout in the original
three COO arrays. These submatrices are kept in the original input arrays, and
their offsets are kept in their enclosing quad-tree father node. Notice that two
submatrices are represented with CSR, and two as COO.

is selected; then it is analyzed, and either subdivided in quadrants (and marked
as closed node) or marked as a closed leaf. In either case, each cycle closes
submatrix s and opens up to four submatrices. Therefore, the loop iterates a
number of times equal to the number of the nodes (both inner and leaf) in the
produced quad-tree.

In Fig. 5.7 we present the cutoff function δr which decides if subdivision of
s should proceed.

Since the input COO arrays are row-major sorted, in order to identify quad-
rants of s in them, we need to mark, for each row, indices for: the leftmost
element of the two left quadrants, the leftmost of the two right quadrants, and
the first one after the rightmost of the two right quadrants; that is, pin-point
subrows in each quadrant. To this end, IA and JA are scanned in Subrow Split,
and subrows information is stored in the three row pointers arrays L,M,R. Row
pointers data will be reused when assembling submatrices in CSR. The first in-
vocation of Subrow Split requires L,R for the whole A in order to compute the
first middle row pointers array M . Notice that for any row i of A, L[i+1] ≡ R[i].
For this reason, before entering the loop, we pre-compute a single row pointers
array P , and set the initial L,R as pointer aliases of P . That is, P can serve as
L, and aliased after its first element, as R does; in Fig. 5.6 and 5.11, we have

used “
p←” to signify pointer aliasing2. P is computed by COO RowP , listed in

2For more details about our notation conventions, see §D.

Figure 5.5: COO to RSB(IA, JA,VA).
/*Matrix A is expressed using arrays IA, JA,VA*/1

Instantiate the root matrix node sA, marked RSB and “open”2

[P, sA]← COO to RSB s(sA, IA, JA)/*Symbolic subdivision*/3

/*Now sA is the root of a quad-tree for A, with empty leaves*/4

/*P is a rows pointer array for IA, JA,VA*/5

COO to RSB V (sA, P,VA) /*Numerical arrays shuffling*/6

COO to RSB J(sA, P, JA) /*Indices shuffling/displacement*/7

/*P is no longer needed and IA, JA,VA are in RSB order*/8

RSB Leaf Switch(sA) /*Indices switch*/9

/*A number of leaf matrices has halfword indices, now.*/10

return sA /*Return sA, now quad-tree for A*/11

Fig. 5.8.
After boundaries are identified, and nonzeroes counts are known for each

quadrant, at line 17, we invoke the RSB Split Node. It will add an open leaf
submatrix for each non-empty quadrant, and copy the L,M,R arrays in appro-
priate offsets of the IA array. In this way, IA is used for storing submatrices
rows information, and subsequent invocations of Subrow Split will use the L,R
arrays recovered from there.

In the case the δr does not make s a candidate for subdivision, s gets closed as
a leaf matrix, and marked to contain data in the CSR or COO format (depending
on the available index space; lines 19-23). In the case s is the root node for
A (sA), and fitting CSR arrays (nnz > m), L (aliasing P) is copied at the
appropriate offset of IA, overwriting original row indices (not needed anymore).

After assembling the quad-tree for the sA, the original JA,VA arrays stor-
ing column indices and values of the matrix coefficients are still unmodified,
and ready for being displaced to their destination location. The IA array, in-
stead, has been overwritten. For submatrices marked for CSR storage, IA al-
ready stores a row pointers array, which a CSR representation requires. For
submatrices marked for COO storage, the relevant subarrays for IA could have
been overwritten during parent node subdivision, and therefore they should be
reinitialized to their original values. Actually, each submatrix node has infor-
mation on the count of nonzero elements in its own quadrants. Recall, that in
RSB Split Node, the nonzero offset of each submatrix in the quad-tree repre-
sentation was computed. Now, each submatrix s could be extracted to a tempo-
rary storage, row by row, from the original matrix specified in subsequent rows,

123

Figure 5.6: COO to RSB s(sA, IA, JA).
Qnnz ← [0, 0, 0, 0] /*nonzeroes count for quadrants */1

Allocate four (s.m+ 1)-sized arrays L,M,R, P2

/*CS: Cache(s) Size, ES(= 8 for double): Element Size*/3

sA.NS ← 0; sA.MAXS ← (sA.nnz · ES)/(CS/Nthreads)4

COO RowP (IA, JA, P, sA.nnz, sA.m) /*fill row pointers in P*/5

sA.L
p← P ; sA.R

p← P + 16

/*sA.L points to row beginnings, sA.R points to row endings (aliasing the7

second element of P)*/
while Some leaf submatrix is still “open” do8

sA.NS ← sA.Ns + 1;9

s← “largest by nnz” open submatrix10

if δr(s.m, s.k, s.nnz, CS,ES,WS) then11

/*copy subrow pointers stored in s.IA, s.JA */12

L← s.IA; R← s.JA;13

/*get quadrants info Qnnz, fill middle pointers array M*/14

Qnnz ← Subrow Split(s, L,R,M, JA)15

/*split s, appending up to four quadrant submatrices*/16

RSB Split Node(s,Qnnz, L,M,R, IA, JA)17

else18

/*closing (marking as terminal)*/19

if s is sA and s.nnz ≥ s.m+ 1 then s.IA← L20

/*For sA, a copy is necessary.*/21

if s.nnz ≥ s.m+ 1 then Mark as CSR22

else Mark as COO23

end24

end25

return [P, sA]/*Arrays L,M,R can be freed.*/26

Figure 5.7: δr(m, k, n,CS,ES,WS).
/*WS(= 4): Word Size of index element, µ = 3 */1

if sA.NS ≥ sA.MAXS then return False2

if n · ES > 2 · CS and m < 216 and k < 216 then return True3

if (ES (2 · n+m) +WS · (m+ n)) > α CS and n/m > µ then return4

True
return False5

Figure 5.8: COO RowP (IA, JA, P, nnz,m).
P [:]← 0/* fill with zeros*/1

for n← 0 to nnz − 1 do P [IA[n] + 1]← P [IA[n] + 1] + 12

for i← 0 to m− 1 do P [i+ 1]← P [i+ 1] + P [i]3

/*for each i, P [i] now has the offset of row i in IA, JA*/4

Figure 5.9: Subrow Split(s, L,R,M, JA).
n00 ← 0; n01 ← 0; n10 ← 0; n11 ← 0;1

for i← 0 to b(s.m+ 1)/2c do2

M [i]← Search(JA, L[i], R[i], s.koff + ds.k/2e)3

n00 ← n00 + (M [i]− L[i]); n01 ← n01 + (R[i]−M [i])4

end5

for i← d(s.m+ 1)/2e to s.m− 1 do6

M [i]← Search(JA, L[i], R[i], s.koff + ds.k/2e)7

n10 ← n10 + (M [i]− L[i]); n11 ← n11 + (R[i]−M [i])8

end9

return [n00, n01, n10, n11]10

Figure 5.10: Search(JA, l, r, h).
Binary search for the smallest m such that JA[m] ≥ h and l ≤ m ≤ r1

return m2

125

at the submatrix offset s.nzoff (computed by RSB Split Node, in Fig. 5.11).
To keep the shuffling algorithm simple, we have chosen to allocate two tempo-
rary JAt and VAt arrays; gather there the displaced rows for coefficients and
indices, and copy back to JA,VA. Since different submatrices should be laid
in separate intervals of JA and VA, the shuffling algorithm can be parallelized
on a submatrix basis in a parallel cycle. Once shuffled, the temporary arrays
are copied back using a simple OpenMP-parallel wrapper around the standard
memcpy ([pos08]) function.

Figure 5.11: RSB Split Node(s,Qnnz, L,M,R, IA, JA).
Q← [...] /*allocate a submatrix structure for each nonempty quadrant of1

s; then for each quadrant qij, set info for nonzeroes, dimensions, and
row,column,nonzeroes offsets relative to the whole matrix; then copy
portions from the subrow pointer arrays from L,M,R*/
if n00 > 0 then2

q00.m← ds.m/2e; q00.k ← ds.k/2e;3

q00.moff ← s.moff + 0; q00.koff ← s.koff + 0;4

q00.nzoff ← s.nzoff + 0; q00.nnz ← n00;5

q00.IA
p← IA + q00.nzoff ; q00.JA

p← JA + q00.nzoff6

if q00.nnz > 2 · q00.m+ 2 then7

q00.IA← IL[1 : q00.m]; q00.JA← IM [1 : q00.m];8

end9

end10

if n01 > 0 then11

q01.m← ds.m/2e; q01.k ← bs.k/2c;12

q01.moff ← s.moff + 0; q01.koff ← s.koff + q00.k;13

q01.nzoff ← s.nzoff + n00; q01.nnz ← n01;14

q01.A
p← IA + q01.nzoff ; q01.JA

p← JA + q01.nzoff15

if q01.nnz > 2 · q01.m+ 2 then16

q01.IA← IM [1 : q01.m]; q01.JA← IR[1 : q01.m];17

end18

end19

. . . /*And so on for q10, q11.*/ . . .20

The shuffling procedures for JA (Fig. 5.13) and VA (Fig. 5.12) are similar. For
VA (COO to RSB V), only rows shuffling is needed, but for JA (COO to RSB J),
besides shuffling, we need also to adjust indices relative to the submatrix loca-

tion, and restore indices of IA. After the shuffling phase, submatrices are either
stored as fullword (by default, 32 bit) COO or CSR. RSB (see §4.3) allows
smaller leaves to have 16 bit coordinate (for COO) or column (for CSR) indices.
For this, we use a separate procedure, RSB Leaf Switch, operating an in place
conversion on the arrays of the candidate submatrices. Note that interleaving
shuffling and conversion could save a substantial fraction of memory accesses;
however the constructor logic would be much more involved. After this (last)
step, the matrix is assembled as RSB and ready for use.

The presented assembly procedure consists of a serial stage (subdivision), fol-
lowed by two stages exploiting parallelism (shuffling and conversion). Initially,
we considered to propose a parallel subdivision step. However, we observed that
this would require us to use more complicated techniques, and would also entail
differences in the computed partitions. For instance, we could have let threads
subdivide the matrix concurrently, but non-determinism in the order of subdi-
vision could lead to non-deterministic quad-tree shape/matrix partitioning. In
such a case, we would have either to accept the algorithm as non-deterministic
(which we did not want), or use complicated backtracking techniques to re-
vert unnecessarily subdivided submatrices and an equivalent tree. On the other
hand, we have found strategies for the parallelization of the current subdivision
algorithm routines (based on fine-grained parallelism) to be problematic regard-
ing synchronization, and therefore shortsighted, in the perspective of many-core
computations, expected in forthcoming computers. Therefore, for the time be-
ing, we have chosen a simple serial strategy, and left other enhancements for
future developments. Indeed, besides being serial, the subdivision stage faces a
growing amount of work, as more subdivisions are performed on a matrix; and
thus, it will slow down further, the more threads will participate in the SpMV
computation (recall line 4 in Fig. 5.6). Each subdivision of a submatrix s re-
quires (a) the copy of two arrays, (b) s.m binary searches during split, and (c)
one array write per search. In the worst case, this involves about s.m random
accesses in the binary searches, (which perform non-linear accesses), but the
remaining accesses are linear, and could be performed taking advantage of the
available prefetching engine on the CPU.

Analysis of the complexity of subdivision is beyond the scope of this study;
a gross, pessimistic estimate we could provide for the memory traffic would be
up to o(h · nnz) memory writes (where h is the height of the quad-tree). This
would be the case where all of the submatrices would fit exactly as CSR: if
some were COO, binary searches would be performed on their parent matrices,
but with no subsequent row pointers copy (matrices are assigned as COO if
they don’t fit CSR, with no further subdivision). If some submatrices had rows

127

Figure 5.12: COO to RSB V (sA, P,VA).
Allocate a temporary vector VAt, fitting VA.1

parallel foreach s ∈ S do2

VAs
p← VAt[s.nzoff]3

if s.nnz ≥ 2 · s.m+ 2 then4

for i← 0 to s.m− 1 do5

Append subrow VA[s.L[i] : s.R[i]] to VAs6

end7

else8

for i← 0 to s.m− 1 do9

l← P [s.moff + i];r ← P [s.moff + i+ 1]10

l← Search(JA, l, r, s.koff)11

r ← Search(JA, l, r, s.koff + s.k)12

Append subrow VA[l : r] to VAs13

end14

end15

end16

MEMCPY Parallel(VA,VAt)/*VA← VAt*/17

Figure 5.13: COO to RSB J(sA, P, JA).
Allocate a temporary vector JAt, fitting JA.1

parallel foreach s ∈ S do2

JAs
p← JAt[s.nzoff]3

if s.nnz > 2 · s.m+ 2 then4

for i← 0 to s.m− 1 do5

Append subrow JA[s.L[i] : s.R[i]] to JAs6

Make a CSR row pointer in IA, using L, R7

end8

else9

for i← 0 to s.m− 1 do10

l← P [i];r ← P [i+ 1]11

l← Search(JA, l, r, s.koff)12

r ← Search(JA, l, r, s.koff + s.k)13

Append subrow JA[l : r] to JAs14

if s.nnz < s.m+ 1/*COO case*/ then15

Set array s.IA with value i16

else17

Make a CSR row pointer in IA, using L, R18

end19

end20

end21

Adjust s.JA indices, by subtracting the offset s.koff .22

end23

MEMCPY Parallel(JA, JAt)/*JA← JAt*/24

129

Figure 5.14: RSB Leaf Switch(sA).
parallel foreach leaf node s of quad-tree sA do1

if Marked for halfword indices then2

if CSR format then3

Convert JA into using 16 bit indices, in place4

end5

if COO format then6

Convert IA, JA into using 16 bit indices, in place7

end8

end9

end10

denser (s.nnz > s.m+ 1), it would mean that only O(s.m+ 1) elements would
be moved (out of s.nnz).

The shuffle stage is different: it involves two transfers of contents of arrays
VA and JA; and between m and nnz element moves for IA. If not coupled with
the copy operation, the index adjustment for JA accounts for further, up to
O(nnz), accesses; similarly for restoring the IA arrays of COO leaves. Similarly,
the complexity of the compression stage involves modifications of up to 2 · nnz
memory locations (once). Besides the memcpy-like operations, when shuffling
the COO submatrices, the JA array would be binary-searched repeatedly for
the identification of subrows bounds (after determining bounds for search using
P). The same binary-search based algorithm is needed for the CSR submatrices
having s.nnz ≤ m (since the corresponding IA subarray would not contain both
right and left subrows pointer arrays). For CSR leaves having s.nnz > s.m,
right and left subrow pointers are recovered from IA, subrows in JA and VA
are located, and no search is needed at all. Notice the independence from the
quad-tree height (and thus, from the matrix size).

5.4.1 Experimental Results

For space reasons, we won’t be able to present a comprehensive analysis of the
constructor performance, and thus we will focus on the most important topics
(please refer to §A.5 for a full description of the experimental setup we used).
Our exposition is geared towards iterative methods; here, the affordability of
the constructor code is inversely proportional to the number of SpMV’s that
are expected to be performed after matrix instantiation. Hence, performance

sp
ee

du
p

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0.
0

0.
5

1.
0

1.
5

2.
0

Figure 5.15: RSB matrix assembly scaling on M2.

profiles for both SpMV and construction operations are needed. We will thus
present the constructor performance considering two metrics: the number of
SpMV that are time-equivalent to a constructor run on the given matrix, and
the scalability of the constructor with respect to the single core case.

In our previous work (See §4.1, §4.3), using 8 cores on M4 and M2, we
have encountered a SpMV speedup of up to 5×. In §5.4, we have motivated
the reasons for keeping a part of our constructor code serial. Therefore, the
observed scalability is indeed weak, as depicted in Fig. 5.16, 5.15. We see that
the maximum speedup on both machines is 2.45× on M4 and 2.86× on M2;
this is approximately half than observed for the SpMV. We notice the best
speedup for matrices relat9 and rail2586 on M4; patents and parabolic fem on
M2. In two cases (neos and parabolic fem on M4) we notice a slow-down. Due
to the increasingly loaded serial stage; in both cases, this happens after a no-
subdivisions instantiation, for 1-core (for space reasons, we omit graphs with
submatrix counts).

Relating constructor and SpMV times, we notice the constructor dominating
the SpMV, in Fig. 5.17,5.18. We observe the maximal ratio for matrix wb-edu (up
to 52.8× on M4, up to 27.7× on M2); a minimal one for matrix rail2586 (from

131

sp
ee

du
p

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0.
0

0.
5

1.
0

1.
5

2.
0

2.
5

Figure 5.16: RSB matrix assembly scaling on M4.

2.8× to 4.4×, on M4). In two cases (matrices cont11 l, patents), it happens
that the constructor and SpMV times keep a similar pace (around 10×, on both
machines). Indeed, the SpMV performance of matrix cont11 l does not increase
with more cores, and matrix patents gets partitioned in the same number of
leaf matrices, regardless of the cores count. We notice worse ratios for bigger
matrices: cage15, wb-edu, and GL7d19. Here, patents is big, but it performs
SpMV exceptionally slow (see §4.4).

Let us break down the constructor performance in the serial (subdivision)
and parallel (shuffle and conversion–we will include this last one in the shuffle
results, for convenience) stages. As discussed in §5.4, the subdivision code is
expected to perform a number of passes on the input growing with the number
of threads available for SpMV. In Fig. 5.19 and 5.20, we see the scaling-down of
subdivision performance; we encounter a near-to 5-fold slow-down for matrices
parabolic fem and neos. This is due to no subdivision being performed in the
1-core case; in the remaining cases, we do not notice more than a 2-fold slow-
down.

In Fig. 5.21,5.22, we can see the growing gap between the subdivision and
SpMV. For 1 or 2 cores, this ratio is always lower than 7.0, but for more, it can

x

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
5

10
15

20
25

Figure 5.17: RSB matrix assembly to SpMV time ratio on M4.

x

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
10

20
30

40
50

Figure 5.18: RSB matrix assembly to SpMV time ratio on M2.

133

sp
ee

du
p

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.19: Subdivision scaling on M4.

sp
ee

du
p

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

Figure 5.20: Subdivision scaling on M2.

x

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
5

10
15

Figure 5.21: Subdivision to SpMV time ratio on M4.

grow much: for matrix wb-edu on M2, the subdivision takes 5.1× for 1 core,
and up to 42.4 times SpMV time, for 8 cores.

On the other hand, the shuffle stage scales quite regularly on all matrices in
the test set; see Fig. 5.23, 5.24. Recall that with higher cores counts, notwith-
standing the growing number of submatrices to handle, the shuffle operation
moves approximately the same amount of memory locations (see §4.3.2 for a
discussion on indexing space). As noted in §5.4, in the shuffle (comprehensive of
index compression) phase, the amount of involved traffic depends on the leaves
format; prevalence of COO leaves will trigger more traffic; since compression
happens after the copy operations, it contributes to additional traffic.

We also notice that the ratio of shuffle-to-SpMV times remains very close,
regardless of the active cores count. This is satisfactory, because it indicates
that both the operations scale similarly: see Fig. 5.25,5.26. Indeed, both oper-
ations seems to be memory bound; shuffle more than SpMV, as it doesn’t in-
volve floating point operations, which could be slower than integer operations.
During stand-alone benchmarking our naive parallel memcpy wrapper (MEM-
CPY Parallel, used in §5.4), we experienced at most 8.4GB/s on M4, 6.4GB/s
on M2, and speedups respectively up to 3.1 and 2.2. We expect this limit to

135

x

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
10

20
30

40

Figure 5.22: Subdivision to SpMV time ratio on M2.

sp
ee

du
p

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
1

2
3

4

Figure 5.23: Shuffle scaling on M4.

sp
ee

du
p

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
1

2
3

4
5

Figure 5.24: Shuffle scaling on M2.

contribute with a relevant fraction to the shuffle stage.
By comparing, respectively, Fig. 5.21 to Fig. 5.25 and Fig. 5.22 to Fig. 5.26,

we notice that on both machines, the subdivision (serial) stage becomes domi-
nant over the shuffle (parallel) at around 4 active threads. Clearly, this situation
is not desirable in the perspective of more computing cores, so we recognize
the need for a scaling parallel subdivision stage. Also, by allowing degenerate
subtrees (see §5.4) input could be scanned repeatedly and generating no new
subdivision; this case should also be dealt with.

5.5 Conclusions from the Serial-Parallel RSB Con-
structor Experiments

We have shown a multi-threaded algorithm for the instantiation of RSB matri-
ces out of row major sorted COO arrays. Experimentally, we established that
the conversion execution speed seems tightly bound to the peak memory band-
width; even more than SpMV. Contrarily to previous chapters experiments, here,
we did not present a comparative benchmarking of the matrix build phase, as

137

x

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
2

4
6

8
10

Figure 5.25: Shuffle to SpMV time ratio on M4.

x

RSB1 RSB2 RSB4 RSB8

12m
onth1

af_shell10

cage15

cont11_l

fcondp2

GL7d19

ldoor
neos

parabolic_fem

patents

rail2586

relat9
sm

e3Dc

wb−edu

0
2

4
6

8
10

12

Figure 5.26: Shuffle to SpMV time ratio on M2.

Figure 5.27: Recursive subdivisions of matrix cont11 l for respectively 1,2,4,8
threads on M4. Notice the blue line joining (nonempty) leaf submatrices in the
order they are stored in the RSB arrays. Notice also that the more threads are
active, the finer is the partitioning.

we were not aware of any non proprietary sparse matrix computations package
with shared memory parallel assembly routines3. Our procedure features a serial
subdivision stage, where binary search and arrays copy operations are predomi-
nant, followed by a parallel shuffle stage, where arrays are displaced and indices
adjusted. The shuffle stage scales smoothly; its performance seems strictly mem-
ory bandwidth-bound. While shaping the subdivision stage, we observed that
an efficient parallel reformulation of it would require us to modify the defini-
tion of our format. We did not want to proceed this way as we wanted it to
remain comparable with our earlier work, and so we have decided to leave the
subdivision serial, for now. In practice, we observed the constructor-to-SpMV
time ratio to be 1.6..15.1 times for 1 core, 2.5..22.4/2 cores, and 4.2..52.8/8
cores. Indeed, we have observed that the serial phase begins to dominate the
constructor time as soon as at about 4 threads. For this reason, we recognize
need of further research to develop a scalable, parallel algorithm to perform the
initial subdivision, as this is the key to a scalable RSB matrix constructor. We
deem also interesting to study parallel conversion/extraction mechanisms for
interfacing to other formats, and consider the performance impact of building
preconditioners, while solving linear systems. Of course, a number of trivial but
effective optimizations (see §5.4) may also be applied.

An important remark we wish to make is that, since row major sorted COO

3Actually, we measured CSB constructor timings with the publicly available prototype.
We found that comparing our timings to that of CSB would be unfair, firstly because the
CSB build routines are not parallel, and secondly because they were not optimized (being
definitely much slower than ours).

139

input is almost equivalent to CSR (the two differing in the contents of one of
the three arrays; see §1.2), and since the cost of a COO-RSB conversion exceeds
from a few to several times the cost of a SpMV, the overhead of converting
to RSB may be excessive for the iterative methods based solution of certain
systems requiring very few steps and thus giving limited savings over CSR4.
However, even in these case of few iterations per iterative method invocation,
RSB may be advantageous over CSR if repeated invocation of the method is
needed, just like it happens often during the simulation of evolving physical
phenomena.

5.6 Enhancing Build Parallelism

In the preceding sections, we have presented a partially parallel algorithm for
the instantiation of sparse matrices in the RSB format. There, we also found
that the serial bottleneck was the subdivision phase, so here we present a parallel
procedure for that phase.

Since the most time consuming task performed in the subdivision phase con-
sists in the copy of row pointers arrays, a parallel subdivision routine should
allow multiple threads into this. The copy operation occurs on ever smaller
submatrices, starting with the whole matrix; parallelizing the copy of indi-
vidual submatrices, however, would require repeated threads synchronization
(branch/join), for each submatrix. Given the ever increasing number of cores/threads
available on computers, this solution would clearly be not appealing.

The alternative approach is coarse grained: each thread would obtain, in
turn, exclusive access to an existing submatrix s, and would subdivide it. Allow-
ing multiple threads at once into this procedure requires coordinating multiple
subdivisions occurring in parallel.

It is clear that by allowing some threads into getting exclusive access to
submatrices, while other are still subdividing, the resulting order of submatrices’
subdivision would be different from that in Fig. 5.6.

That is, our parallel subdivision procedure produces non deterministic re-
sults: the organization of each RSB matrix depends partly on the system’s
scheduling choices. From the computation efficiency standpoint, however, hav-
ing a fully parallel matrix constructor is a very desirable feature, even at the
cost of having a non deterministically built data structure.

4For SpMV/SpMV-T results when comparing to a high performance CSR implementation,
see §C.

Figure 5.28: COO to RSB s Parallel(sA, IA, JA).
Allocate a (s.m+ 1)-sized array P1

COO RowP (IA, JA, P, sA.nnz, sA.m) /*Fill row pointers in P*/2

Nt ← available threads count ; Nc ← 0; Ni ← 0; No ← 13

Ns ← (αp · sA.nnz · ES)/CS /*Shared variables:Qnnz, Nt, Nc, No, Ni*/4

begin parallel5

while No > 0 or Ni > 0/*Some leaf submatrix is still “open”*/ do6

begin critical section7

s← “largest by nnz” open submatrix8

if s 6= nil/*If such submatrix exists and is available*/ then9

/*Update the in-progress, closed, open submatrices counters*/10

Ni ← Ni + 1; Nc ← Nc + 1; No ← No − 1;11

end12

end critical section13

if s 6= nil then14

/*Is it both possible and profitable to subdivide ?*/15

Ss ←(No +Nc + 4 < Ns) and δp(s.m, s.k, s.nnz, CS,ES,WS, sA)16

if Ss = True then17

/*Get quadrants info Qnnz = [n00, n01, n10, n11]*/18

Qnnz ← Subrow Split Search Only(s, P, IA, JA)19

Nn ←count of nonempty quadrants in s (in [1...4])20

Ss ←is the partitioning in Qnnz balanced for s?21

end22

if Ss = True then23

begin critical section24

No ← No +Nn/*Update the open submatrices count*/25

end critical section26

subdivide s: copy index arrays and info in the new submatrices27

begin critical section28

add the new submatrices as children of s29

Ni ← Ni − 1/*Decreasing the “in progress” counter*/30

end critical section31

else32

mark s for either COO or CSR format33

end34

end35

end36

end parallel37

141

In Fig. 5.28 we show a parallel replacement for the subdivision stage, orig-
inally formulated as in Fig. 5.6. By applying this replacement, the listing in
Fig. 5.5 executes all of its stages in a parallel fashion.

The algorithm in Fig. 5.28 is only sketched out here, although it is fully
implemented in our prototypal code. We chose to omit details in order to make
the algorithm listing clear in its main ideas.

The idea is that of allowing the parallel execution of the subdivision phase;
that is, the routines counting nonzeroes in quadrants, and the copy of index
arrays. Coordination among threads is obtained by the use of shared variables
(line 3 and surrounding ones). The variables occurring within the begin par-
allel/end parallel constructs are meant to be local to each thread. Access to
shared variables is arbitrated by appropriate critical sections; for instance,
at line 8, only one thread at a time is allowed to access the current matrix
tree and obtain an “open” leaf submatrix to work on. Submatrices are marked
either “open” or “closed”; “open” ones are candidates for further subdivision,
“closed” ones are not modified anymore. Right after being chosen for possible
subdivision, a submatrix s is checked against a cutoff function δp (see Fig. 5.29)
if subdivision is desirable. In δp, a small constant (γ ≈ 1) is used as a multi-
plier in a conditional expression allowing subdivision on a nonzeroes-per-thread
basis, thus overriding the already presented δr cutoff function.

Figure 5.29: δp(m, k, nnz,CS,ES,WS, sA).
if nnz > γ(sA.nnz/Nt) then1

return True2

else3

return δr(m, k, n,CS,ES,WS)4

end5

Besides using δp, we also check some counters for not exceeding a maximum
desired number of submatrices Ns, at line 16. If the submatrix is a candidate
for subdivision, a further check is performed: this time, using information which
was not available before a submatrix indices arrays scan. At line 19, input arrays
are scanned and nonzeroes counts are determined for each quadrant. With this
information, we may identify very unbalanced submatrices, like those having one
populated quadrant and almost empty remaining quadrants. Detecting such
cases would be desirable, in order to inhibit further subdivision, especially if
the count of submatrices so far subdivided is enough to balance the workload
among threads. In the case we are confident an appropriate balance is reached,

we proceed with updating a shared counter variable: we mark that some (Nn)
new submatrices are being allocated,in a critical section area. Right outside
the critical section area, we perform the heaviest operations; that is, (line 27)
the copy of index data arrays into the new submatrices (recall Fig. 5.6), and
initialization of submatrices quadrants5. To this end, the information computed
at lines 18-20 is combined with that of the s submatrix. After this operation, we
enter again into the critical section, update the Ni counter, mark that there are
Ni incomplete “open” matrices being processed (see line 29). The Ni counter is
essential: without it, almost all of the threads would exit the outer cycle in the
first loop. When entering, only one submatrix could be subdivided, and there
would be no other submatrices to work on.

Whenever a submatrix s is not considered as a candidate for subdivision (see
line 33), it gets marked as closed, and information about a candidate format
(between COO and CSR) is attached to it. Update of its arrays according to the
chosen format will be performed in the shuffle phase, following subdivision—see
line 6 in Fig. 5.5.

The parallel subdivision procedure finishes, and a submatrices tree is com-
plete, with each leaf having attached information about its nonzeroes count,
offset, dimensions, (and index arrays, in the case of CSR leaves), and ready for
the shuffle operations, as explained in the previous sections.

5To simplify readability, we have chosen to initialize variables Qnnz, Nn at lines 18-20, even
if their lexical scope is extended to the next conditional construct.

143

Figure 5.30: Subrow Split Search Only(s, P, IA, JA).
n00 ← 0; n01 ← 0; n10 ← 0; n11 ← 0;1

for i← 0 to b(s.m+ 1)/2c do2

lp← Search(JA, P [i], P [i+ 1], s.koff)3

mp← Search(JA, P [i], P [i+ 1], s.koff + ds.k/2e)4

rp← Search(JA, P [i], P [i+ 1], s.koff + s.k)5

n00 ← n00 + (mp− lp); n01 ← n01 + (rp−mp)6

end7

for i← d(s.m+ 1)/2e to s.m− 1 do8

lp← Search(JA, P [i], P [i+ 1], s.koff)9

mp← Search(JA, P [i], P [i+ 1], s.koff + ds.k/2e)10

rp← Search(JA, P [i], P [i+ 1], s.koff + s.k)11

n10 ← n10 + (mp− lp); n11 ← n11 + (rp−mp)12

end13

return [n00, n01, n10, n11]14

6
Conclusions and Future Work

6.1 Conclusions

In this dissertation, we have guided the reader throughout our considerations
about the traditional, well-known layouts and algorithms for sparse matrix
computations (in the introductory chapter §1); through recent developments
in hierarchical sparse matrix formats (in §2,§2.1,§2.2); and then towards the
development of a new, hybrid memory layout for the representation of sparse
matrices we have named RSB—Recursive Sparse Blocks, beginning with §2.3.
The central idea of this work has been the use of recursive subdivision of a
matrix in quadrants (half the dimension of each submatrix), ending with sparse
cache blocked leaf submatrices whose data structure depends on the enclosed
nonzeroes pattern, on a submatrix basis.

Due to the relevant number of factors playing in opposite directions (e.g.:
coarse grained partitioning vs scalability), as well as hard to foresee parameters
(e.g.: performance in updating a vector with an irregular access pattern), trying
to optimize the code and algorithms by means of some theoretical performance
model would have been very difficult, if not impossible to achieve. For this rea-
son, our research has been guided by the feedback from subsequent experiments.
The course of incremental development of our techniques (and key findings) is
summarized here.

• With the development of the recursively quad-partitioned CSR format
(RCSR) (in §2.3 — see [MFT+10]), we achieved a serial/dual threaded
performance (see §2.4) which is comparable or better than that of a scal-

145

able research format prototype (CSB). The advantage of our approach,
though, has been the chance for reuse of well known CSR algorithms and
techniques for other operations (say, random access ones; see §2.3.5).

• We have developed a non-deterministic shared memory parallel algorithm
for the general/symmetric RCSR sparse matrix-vector multiplication op-
eration (§3.1 — see [MFPT10b]). We ran experiments on three different
machines using up to 8 hardware threads; again, comparing to the CSB
prototype. Generally, we have found the performance of our multithreaded
SpMV for RCSR superior to CSB ’s with fewer threads, but often scaling
up poorly (performing worse than CSB). The main reason for this being
often the excessive indices usage; insufficient partitioning (leading to a
lack of parallelism) in other cases. We have improved this in §4. We also
ran experiments on matrices stored as symmetric (not supported by CSB,
so no comparison possible here), achieving as much as a 5x speedup.

• We have developed a non-deterministic shared memory parallel algorithm
for the RCSR sparse triangular solve operation (§3.2 — see [MFPT10b]).
Here, we achieved a parallel speedup up to 3x, using the same data struc-
ture we use for SpMV, in our effort of proposing an unified approach. For
this operation, however, data dependencies are very constraining, and not
every matrix may have a nonzeroes pattern allowing an effective parallel
speedup.

• We have tuned RCSR (into RCSRH) by introducing short indices (§4.1
— see [MFPT10c]), with the intent of reducing the memory footprint of
SpMV (§4.2). In this way, we have improved both scalability and perfor-
mance of SpMV in RCSR (§3.1), up to 8 threads. RCSRH has been found
to be comparable or better than the CSB prototype on unsymmetric ma-
trices (§4.2.3,§4.2.1), while still supporting symmetric storage and SpSV
operations (§4.2.2). In some cases though, we noticed an additional index
usage, and related inefficiencies.

• We have tuned the RCSRH format further (naming the resulting, hybrid
format Recursive Sparse Blocks (RSB)), still keeping a great degree of gen-
erality, by further diversification of leaf submatrices and introducing COO
leaves (§4.3 — see [MFG+10]). In this way, we improved some inefficiency
encountered in §4.1, and confirming the strong link between indices stor-
age saving and performance improvements for both unsymmetric (§4.4.1)
and symmetric (§4.4.2) cases. When comparing (unsymmetric) results to

CSB (§4.4.3), we noticed that RSB results are much closer to CSB than
before; we see this as being an effect of the increased similarities between
the two formats.

• We have devoted a whole chapter (§5 — see [MFPT10a]) to an important
problem — that of building efficiently an RSB matrix in memory, giving
a partially parallel/scalable algorithm for this purpose. Here, we establish
experimentally the build-to-SpMV time ratios for 1 to 8 threads for a
number of matrices. This knowledge is essential when deciding about the
adoption of RSB in a given application. We were not aware of any other
freely available shared memory code with parallel build routines, so we did
not have means to perform comparative benchmarking. In this work, we
also found that the matrix build process is even more memory bandwidth
constrained than SpMV is, and thus the effort of further study of improving
our techniques may be useful. In the chapter closing (§5.6), we suggested
an enhanced build algorithm offering even more parallelism. This new
algorithm would have slightly changed the definition of RSB into being
non deterministic, so we have chosen to study it further in the future as
an interesting development.

• In §C, we have presented experiments of our RSB prototype when running
SpMV and SpMV-T, and comparing results to that of the highly optimized
CSR routines present in the Intel’s MKL library. We found our approach
superior on most large matrices, especially on unsymmetric ones, in both
parallel and serial runs.

• Finally, §C.4 has shown comparative results for MKL’s CSR against RSB
in the SpSV operation, on large triangular matrices. Here we noticed that
RSB has advantages over CSR, in the serial case. As we have seen in §3.2,
RSB is capable of obtaining a moderate speedup with its parallel SpSV
algorithm, but we did not explore this option here.

With the closing experiments in (§C), we have confirmed that RSB is supe-
rior to CSR for SpMV/SpMV-T computations on large matrices, and we recog-
nize that it is ready to host further, processor specific optimization (we did not
adopt any such optimization in our code).

In addition, our RSB implementation performance was found to be compara-
ble to that of the scalable CSB prototype (along with the reduced SpMV/SpMV-
T performance gap), while still retaining many advantages of COO/CSR (e.g.:

147

symmetric storage, random access—§2.3.5)1.
A result of our research is a prototypal software library, which will be released

soon. This library is also being integrated as a shared memory parallel compo-
nent in the existing PSBLAS library for distributed memory parallel sparse
linear algebra computations. We will publish technical information about our
library separately.

We think that many enhancements are possible for our techniques; we have
summarized most of them in §6.2, §6.3. All of these improvements are topics for
possible future research.

Additional interesting topics for future research, which we would like to point
out, are: the error analysis of our SpMV and SpSV algorithms, especially in the
light of their non-deterministic formulation; the optimization of our techniques
in view of an energy-aware performance metric (as motivated by many current
studies; see [Com11, Ch. 3] for a broad technological overview of the problem).

6.2 Minor Enhancements to RSB

This section gives an overview of modifications to the RSB format/subroutines
bringing enhancements in specific operation areas. These modifications would
require little work to be implemented, and have a minor impact on the many
service routines used for handling matrices.

• Kernels with multiple right-hand sides. Variants of SpMV or SpSV
using more than one right-hand side vector at a time (that is, multiplying
(SpMM) or solving (SpSM) by a dense matrix) with specialized low-level
kernels have been reported (for instance, see Im [Im00, Ch. 5]) as being
faster than doing the same, one (dense matrix) vector at a time using
SpMV/SpSV operations. The reason for this improvement is the reuse of
the sparse matrix vectors arrays: here, they are reused as many times as
the width of the right-hand side dense matrix. In order to be useful, such
computational kernels should be also coherent with the computation at
hand. Indeed, they are seldom used in the iterative solution of linear sys-
tems; they find more applications in Block-Arnoldi methods for eigenvalue
problems (see [Saa03, Ch. 6.3]), for instance. An additional consideration
should be made about the number of right-hand sides, here: typically,
the prefetch engines of a CPU are capable of detecting a fixed number of

1In [BWOD11], Buluç et al. extend the CSB format for computing symmetric SpMV as
well.

streams (see [Int08a, § 7.2] for some details on Intel microprocessors); if
too many (different) arrays are accessed in turn, the prefetch hardware
may have problems in recognizing even simple linear patterns.

• Convert COO leaves to Z-order. It is known that Z-sorted COO has
favourable properties when multiplying sparse blocks against a dense vec-
tor (see §2.2). Z-sorting COO leaves of RSB may favour cache reuse more
than COR, on certain matrices; its use does not require the modification
of COO SpMV routines (see Fig. 1.5).

• A combined SpMV/SpMV-T kernel. Some iterative methods require
both SpMV and SpMV-T operations at each cycle (the Biconjugated Gra-
dient, for instance—see Barrett et al. [BBC+94, Fig.2.7]), on independent
vectors (both result and multiplicand). This gives us the chance to for-
mulate a specific kernel listing, which would compute both, with a single
matrix visit. However, some modification should be made to the outer
SpMV algorithm; the required row locking strategy should control both
the access to a certain rows interval to one results vector, and another one
(the transposed) on the second. The SpMV listing in Fig. 3.2, and related
lock primitives should be modified for this. The lock overhead of such
modification would be, however, no more than that of symmetric SpMV.
Using the symmetric SpMV locking variant (as described in §3.1) for this
kernel would allow for no further modifications on the outer RSB SpMV
machinery.

• Convert CSR leaves to Zig-Zag CSR. Zig-Zag CSR (see §1.2.4) is a sim-
ple variation of CSR, which is very likely to give some locality improve-
ment with the existing CSR code for SpMV. However, since it requires the
reversal of each second row, it breaks the ascending ordered assumption
many CSR service routines rely upon. For this reason, a proper handling
of Zig-Zag CSR requires some more changes in the entire code base.

Of course, the idea of reversing even rows could be readily extended to
the row-major ordered COO variant (COR, see §1.1), as well as reversing
even columns could be applied to COC/CSR.

• The use of temporary vectors in SpMV. Some of the matrices we
have seen (for instance matrix diego-MM-573x230k; see Fig. 4.25) may be
very unbalanced, in the proportion of nonzeroes per row. Namely, the av-
erage number of nonzeroes per row could be very low for some interval of
consecutive rows, and very high for some other consecutive rows interval.

149

In these cases (see §4.4.4), the row-based lock in our regular SpMV algo-
rithm (recall Fig. 3.2) is not efficient, as the unbalance in the nonzeroes
distribution may lead to the quick “exhaustion” of the blocks placed on
the sparser rows, thus forcing most threads into contention for the blocks
on the most “populated” rows. A possible fixup, here, would be that of
detecting the unbalance either statically (by computing this unbalance in-
formation at assembly time), or dynamically (by computing a row blocks
contention statistic during SpMV), and react by allocating a number of
additional vectors for the accumulation of SpMV results. However it is un-
clear to what extent the usage of such temporary vectors (or subvectors, if
done on an interval basis) would be beneficial, as both the temporary work
areas to-zero initialization, and their subsequent reduction by summation
could be costly, in the presence of many vectors.

• Reproducibility of SpMV/SpSV results. Algorithms we have presented
in Fig. 3.2 and Fig. 3.3 are non deterministic, in that the order of execution
of operations on the individual submatrices (sparse blocks) depends on
the actual scheduling of threads. Since the way floating point numbers
are represented on computers does not ensure neither distributivity of
multiplication over addition, nor associativity of the two, different orders of
execution of operations on the individual submatrices may lead to differing
results. In some contexts, the reproducibility of results may be necessary.

In RSB, we could obtain reproducible computation results by forcing a
particular order of visit to the submatrices. This feature would be trivial
to design in the case of a serial execution, but it would be quite challenging
if it is going to be implemented with an efficient thread parallelism.

• Finer partitioning for SpSV. We recognize that the SpSV algorithm
as presented in §3.2 has an inherent poor parallelism due to the data de-
pendencies among submatrices. We observe that a finer subdivision would
permit a higher degree of parallelism, because more threads would be al-
lowed in the parallel region at once.

• Fine grained control over recursive subdivision, after build. We
speculate that a functionality for targeted, parameter-based further subdi-
vision (that it, a stand-alone formulation of §5.11) or subdivisions rollback
of matrix leaves would give the user a cheap way for tuning the data
structure of a particular matrix on the fly, and verify the performance of
the tuned data structure on the operation of choice (e.g.:SpMV or SpSV).

Such a functionality would serve for a limited-scope empirical optimiza-
tion purpose. A more elaborated framework would automate this empirical
verification of performance and eventually integrate it during the matrix
build process. See Whaley et al. [WPD01] for the topic of Automated
Empirical Optimization and Vuduc et al. [VDY05a] for an application to
sparse matrix structures in the context of a subroutines library.

6.3 Major Enhancements to RSB

In this section, we present a number of possible, quite relevant modifications to
the RSB format (and routines). These modifications require either the change
of substantial concepts of the RSB format as it was presented in this thesis, or a
relevant amount of work, so we group them separately from the minor changes
presented in the previous section.

• Separate leftover matrices for grouping tiny leaves. As we have
seen, the current matrix assembly algorithm (see §5), although using some
heuristics guaranteeing balancing the nonzeroes among quadrants (for in-
stance, choosing the biggest leaf before each subdivision), there is still a
conflicting, but necessary constrain: that mandating a minimal number of
leaf submatrices overall, for load balancing during computations. In some
circumstances, quadrants with very few elements could occur. Think of a
very big matrix (some orders of magnitude bigger than outermost cache
size), with all quadrants quite populated except one, which hosts only few
elements. It is clear that the best thing to do here is to subdivide the ma-
trix: no parallel operations would be possible at all without subdivisions.
In this situation, then, that quadrant with few elements will be instanti-
ated and used during the parallel SpMV and other operations. However,
during SpMV, a lock will have to be acquired, in order to operate on this
tiny submatrix (see listing Fig. 3.2). After that one or more subroutines
will have to be entered, and various branch and loop instructions will occur
before the few operations on that submatrix could be executed. Handling
such inefficiencies would be desirable, especially if many such leaves occur.
If the overall number of such submatrices is high, one could resort into re-
grouping them in one or more leftover matrices, and performing SpMV on
it/them after the main, parallel RSB -SpMV. Since there exists no exact
technique to estimate the number of such occurrences, we leave such an
empirical study as a possible future development. Note that decomposing
a matrix in this way would be somehow in analogy to the variable-block

151

splitting technique used by Vuduc, in the context of BCSR–see [Vud03,
Ch. 5]. Here, however, the application context is quite different.

• Use decision trees for more variants. One could bring further the
considerations discussed when presenting Table 1.1, possibly having even
more code variants to chose from, for the same formats in §1. This could
be coupled with a mechanism active at assembly time, making some fur-
ther consideration in the choice of leaves submatrices format, in Fig. 5.6.
We observe that here, we need formats optimized for submatrices; that
is, matrices having properties differing from full matrices. For instance,
the assumption of having no empty rows is usually appropriate for a full
matrix; it is not on an arbitrary submatrix. In such a context, the develop-
ment of very particular formats (for instance, a list of sparse rows-based
representation), would be appropriate.

• Static submatrix-thread mapping. It would be desirable to rearrange
the SpMV operation in a way to limit the needed coordination among
threads, and still writing the result to disjoint output array intervals. This
would be achievable, if using some static mapping technique; i.e.: defining
when the computation on which submatrix should occur, before entering
SpMV; possibly using some partial ordering technique. This would need
some metric for the estimation of performance in the individual leaves,
in the frame of some performance model which would assure balancing. If
coupled with the use of thread local storage2, for groups of leaf submatrices,
this mapping could give some performance benefits, especially with the
very high number of cores that should be expected in the future3. On
the other hand, a tree-level locking strategy, arbitrating both locality of
access and the row locking, would be a viable solution, regardless of the
storage. As we see, such modification may imply many modifications to the
existing system. Note that the choice of using OpenMP for our research
was motivated mainly by our need for portability and focus on algorithms;
it was a deliberately system-agnostic choice.

• More formats for leaf submatrices. Specialization of leaves could
bring performance benefits; think of using BCSR with some specific brn×
bcn blocking giving low fill-in, specific to each leaf submatrix sn (see §1.2.4).
However, a full integration of BCSR may be difficult. Even in the case of

2That is, having the COO/CSR submatrices as a number of disjoint arrays, each one
allocated in a physically different memory area/bank for each different thread.

3Increased non-uniformity of memory access is to be expected, too.

a uniform br × bc-blocking choice, we observe an incompatibility with the
current definition of RSB, now requiring an m × k matrix to be split in
four quadrants: the first upper left one being sized dm/2e × dk/2e; the re-
maining quadrants consequently. Since it may happen to have dm/2e not
divided by br or dk/2e not divided by bc, one should either decide whether
to change the RSB definition to accommodate matrices’ subdivision con-
gruently to some given blocking, or rather to handle the BCSR leaves in
some custom way4, in a way to avoid off-the-boundary vector read and
write operations caused by the eventual extra rows/columns.

• Extra clearance between submatrices. Currently, the submatrices’
subarrays of RSB fit into the original COO arrays (see §5). There are
situations (i.e.: sparse sums, pattern modifications, data structure change)
where supporting some clearance between the arrays of each submatrix
would allow for some in-place reorganization at the matrix level. Of course,
the assembly algorithms seen in §5 would need to be modified for this.

• Use of code generators for processor-specific optimizations. We
mentioned the use of code generators for producing the variants of our
computational kernels. Some system-specific optimization is easy to per-
form in this context. For instance, the use of software prefetch instructions
could bring benefits. For instance, Intel’s prefetchnta instruction5; see
manuals ([AMD07, § 3.9.6],[Int08a, Ch. 7.4]) informs the CPU about the
non-temporal allocation of some (specified) cache line. That is, the CPU is
requested not to cache a specified cache line after its access; instead, that
cache line is written back to memory before explicit eviction occurs. This
could be of use in the many cases arrays are read or write once, without
reuse (recall Table 1.1). There could be many other optimizations based
on some on specific C compiler pragma, compiler intrinsic, code annota-
tion, or assembly instruction. The use of code generation technology may
ease the application of optimizations of this kind.

• Integration with GPU techniques. The investigations presented in
this thesis deal with techniques for commonly available shared memory
parallel, cache based CPUs. However, the recent enhancements in GPU

4For instance storing the last mod(m, br) rows as plain CSR. Of course, the last mod(k, bc)
columns should be dealt with also, in some way, and so on for the remaining quadrants,
recursively.

5Present in the SSE (“Streaming SIMD Extensions”) extension of Intel architecture’s
instruction set ([Int08b, § 5.5,Ch. 10-12]).

153

based technology (numerical precision, software tools for debugging, and
the potential for a high floating point performance) make GPUs increas-
ingly attractive for sparse matrix computations. In this context, it would
be interesting considering an approach with a number of RSB leaf sub-
matrices to be offloaded to a GPU unit during SpMV computation (if
necessary, storing the leaf submatrices of interest in a GPU-specific for-
mat). Such hybrid CPU-GPU software solutions are increasingly popular;
see Papadrakakis et al. [PSK11] for an example application.

A
Appendix: experimental setup

This appendix chapter keeps track of the setup of most experiments carried
out during the making of this thesis. Each of the following sections details
information about a particular experiment, and gives reference of the section
where results are commented. Sections are independent and self-contained.

A.1 Setup for §2.4 Experiments

machine model cpus/ data caches
cores

M7 AMD Opteron 246 2/1 2xL1,2xL2:
1.0GHz L2:1M/16-w/64B

L1:64KB/2-w/64B
M5 AMD Athlon 64 X2 2xL2:

Processor 6000 1/2 L2:1MB/16-w/64B
3.0GHz L1:64KB/2-w/64B

M2 AMD Opteron 2354 2/4 2xL3,2x4xL2,2x4xL1:
Quad-Core L3:2MB/32-w/64B
2.2GHz L2:512KB/16-w/64B

L1:64KB/2-w/64B

Table A.1: Test machines for §2.4 experiments.

For space reasons we report results obtained on a limited experimental setup.
In our experiments, we run SpMV (defined as y ← y + Ax) on the (non-
symmetric) matrices reported in Table A.4. They originate from the Univer-

155

machine name compiler
M5 gcc version 4.1.2

M7,M2 gcc version 4.3.2

all gcc version 4.2.4

(Cilk Arts build 8503)

Table A.2: Compilers on test machines for §2.4 experiments.

implementation compilation flags
CSR/CSC/RCSR/RCSC (C99) -O3 -fopenmp -std=c99

CSB*/CSC* (CILK++) -O3 -fno-rtti -fno-exceptions

Table A.3: Relevant (non-warnings) compiler flags used for §2.4 experiments.

sity of Florida Sparse Matrix Collection [Dav10]. Our (RCSR/RCSC) SpMV
kernel implementations have been run with and without multicore parallelism,
and are compared against the CSB (see §2.2) prototype code released by Buluç
and authors of [BFF+09]. We have chosen to benchmark against CSB because,
just like RCSR/RCSC, it was conceived to be used in a multicore context. The
CSB format stores Z-sorted elements in sparse blocks of 2k size, whereas the
RCSR/RCSC stores Zb-sorted submatrices of arbitrary size; we find this dual-
ity interesting for comparison purposes. The CSB code is parallelized with the
CILK++ system, which extends the C++ language and requires applications
to be compiled by its special compiler. Then, the executable program file is
linked to the CILK++ runtime load balancer. The codes were run on the 64
bit machines shown in Table A.2; the used compiler versions are in Table A.2;
compilation flags in Table A.3. We chose not to use machine-specific optimiza-
tion flags because of slight incompatibilities between the CILK++ compiler
and compilers available in the Fedora Linux distributions installed on our ma-
chines. Both codes use double as the numerical type, 32 bit integer indices,
and 64 bit pointers. With each experiment, we also report the measured per-
formance of CSR/CSC(our implementation) and the CSC implementation of
Buluç et al. [BFF+09] (in the plots we mark the measurements of their code
with an asterisk, as in CSC* and CSB*). We have modified the timing function
of the CSB code to use a double (instead of an int) variable, to limit precision
loss (milliseconds are measured). Both codes use now the gettimeofday POSIX
function for timing. Performance is expressed in Millions of FLoating Point Op-
erations per Second (MFLOPS) As conventional for the SpMV, we count two

floating point operations for each matrix nonzero. We perform 100 SpMV kernel
runs for each sample and report the best value (we have observed that in all
cases best value differs from the average by no more than 2%). Note that the
actual CSB prototype code leaves apart portions of matrices, and thus taking
into account this leftover in the computation would likely lead to somewhat
differing results. We should also note that during benchmarks, the M2 machine
was also (lightly) loaded as a web server, and this could have adversely affected
our measurements.

matrix rows columns nonzeros n.z./r. n.z./c.
ASIC 320k 321821 321821 2635364 8.19 8.19
Rucci1 1977885 109900 7791168 3.94 70.893
cont11 l 1468599 1961394 5382999 3.67 2.74
neos 479119 515905 1526794 3.19 2.96
rail4284 4284 1096894 11284032 2633.99 10.287
rajat31 4690002 4690002 20316253 4.33 4.33
sls 1748122 62729 6804304 3.89 108.47
sme3Dc 42930 42930 3148656 73.34 73.34
spal 004 10203 321696 46168124 4524.96 143.51
stomach 213360 213360 3021648 14.16 14.16
torso1 116158 116158 8516500 73.32 73.32

Table A.4: Test matrices for §2.4 experiments.

A.2 Setup for §3 Experiments

To illustrate the efficiency of the proposed approach, we report performance
results for the SpMV and the SpSV operations, respectively defined as y ← Ax
and x ← L−1x. As representative samples for the SpSV we have selected the
lower triangles (L matrices) originating from the LU factorizations of a mix of
the matrices used by authors of [May09] and [VKH+02]. These matrices are
publicly available at the University of Florida sparse matrix collection (see,
[Dav10]). Their LU factorizations were computed using SuperLU 3.1 [DEG+99]
after reordering with COLAMD [DGLN04], called indirectly by GNU Oc-
tave 3.0.3 [BA06]. To test the performance of the SpMV, we used (1) the same
L matrices as for the SpSV, (2) (unsymmetric) matrices that have been utilized
in experiments reported in [MFT+10] (or §A.1), but run on different machines
and/or with larger number of cores, and (3) nine symmetric matrices. In the
following we report data for the most significant subset of cases. We have also

157

utilized the CSB prototype code (see §2.2 or [BFF+09]), but applied it only
to the group of unsymmetric, non-triangular matrices, as this code does not
support symmetric ones. The performance measurements we report are the best
ones, after performing 100 runs (for either code). However, we found no big
variability in the performance of the runs, which indicates that even though the
proposed algorithms are non-deterministic, their performance is stable.

We canonically count two floating point operations for each nonzero for the
SpMV for general matrices or the SpSV, and four floating point operations for
each nonzero for the SpMV for the symmetric matrices. We employ double as
our floating point type, 64 bit pointers, and 32 bit integer indices.

Table A.2 contains informations about the CPUs of the machines on which
we ran our experiments, and the C compilers we used for our code. We used the
-O3 -q64 -bmaxdata:0x1000000000 -qarch=pwr5 -qtune=pwr5 -qsmp=omp-
-qlanglvl=extc99 -qkeyword=restrict compilation flags on M1, and -O3

-fopenmp -std=c99 on the remaining machines. We have compiled the CSB
code using the required specialized CILK++ compiler, based on 64 bit GCC-
4.2.4, build 8503. We modified this code according to the guidelines found in
[BFF+09] to correctly provide it with machine cache parameters (the L2 cache
size and the cache line length). We were not able to collect results of the CSB
code on the M1 machine, as its architecture is not supported by CILK++.
Note that the M2 machine is a lightly loaded network server, so its results may
include some noise.

We are aware of high level approaches to multi-threading like Intel’s Thread
Building Blocks ([Int10]) or the aforementioned CILK++ ([Int09]), but these
approaches would force us to use C++ and restrict ourselves to the Intel archi-
tecture. So we have chosen to implement our algorithms in C, using OpenMP for
the parallelization, for reasons of availability, standardization (C99 standard),
and compatibility of such approach.

A.3 Setup for §4.1 Experiments

We collected performance data on two machines and 36 matrices. For each
sample, we performed 100 runs of the SpMV operation on the matrix A, the
right-hand side vector x, and the result vector y, defined as y ← y + A · x.
Among these 100 runs, we report the best result, however the variation between
the best and the worst result stayed always below 5%, showing that our ap-
proach is performance-stable. The reported performance is measured in MFlops
(millions of floating point operations per second). We measured timings using

matrix rows columns nnz n./r.

unsymmetric
Rucci1 1977885 109900 7791168 4
rajat31 4690002 4690002 20316253 4
sme3Dc 42930 42930 3148656 73
torso1 116158 116158 8516500 73
symmetric
BenElechi1 245874 245874 6698185 27
F1 343791 343791 13590452 40
Ga41As41H72 268096 268096 9378286 35
af 0 k101 503625 503625 9027150 18
af shell10 1508065 1508065 27090195 18
bone010 986703 986703 36326514 37
boneS10 914898 914898 28191660 31
kkt power 2063494 2063494 8130343 4
ldoor 952203 952203 23737339 25
lower triangles
FEM 3D.. ’s L 147900 147900 107067049 724
av41092’s L 41092 41092 18963133 461
g7jac180’s L 53370 53370 14561594 273
g7jac200’s L 59310 59310 18181493 307
ohne2’s L 181343 181343 322813873 1780
poisson3Db’s L 85623 85623 101532912 1186
sme3Dc’s L 42930 42930 20871702 486
venkat50’s L 62424 62424 10412687 167
torso1’s L 116158 116158 28372106 244

Table A.5: Matrices for §3 experiments. “n./r.” means “nnz/rows”.

the POSIX ([pos08]) gettimeofday() function. Conventionally, we counted 2
Flops per nonzero element for non-symmetric machines, and 4 for symmetric.
We used double precision arithmetic (C’s double type). Our measurements were
performed with hot caches, that is, we deliberately do not flush cache contents
after each SpMV. To avoid artificially high results, we restricted our measure-
ments to matrices not fitting entirely in the caches.

We report the matrices used in our test set in Table A.7 and Table A.8.
They all originate from the University of Florida Sparse Matrix Collection
[Dav10], except for diego-MM-573x230k, an information retrieval document-
term matrix, which was obtained by the courtesy of Diego De Cao from the
Tor Vergata University, Italy. Out of 36 matrices, 12 are symmetric, while
among the unsymmetric ones, 12 are square. They cover a broad range of
applications: patterns/relations: 12month; graphs: cage15, patents, wb-edu; lin-
ear programming: cont11 l, neos, rail2586, spal 004, tp-6; fluid dynamics: at-
mosmodl, raefsky3, rma10, venkat01; 2/3D problems: av41092, torso1, Ben-
Elechi1, nd24; combinatorial problems: c8 mat11 I, GL7d19, rel9, relat9; chem-

159

machine model cpus/cores data caches compiler

M1 IBM POWER 5 (91188-575) 1xL3:36MB (off-chip,not considered) xlc 7.0
16/1 L2:1.92MB/10-w/128B (AIX 5)

1.5 GHz L1:(2x)32KB/4-w/128B
M2 AMD Opteron 2354 2/4 2xL3,2x4xL2,2x4xL1: gcc 4.3.2

Quad-Core L3:2MB/32-w/64B (Red Hat)
2.2GHz L2:512KB/16-w/64B

L1:64KB/2-w/64B
M3 Intel Xeon E5405 2/4 2xL2,2x4xL1: gcc 4.3.2

Quad-Core L2:6MB/8-w/64B (Red Hat)
2.0GHz L1:32KB/24-w/64B

Table A.6: Summary of test environments for §3 experiments.

ical simulations: lhr71; circuit simulation: rajat31; least squares: Rucci1; struc-
tural problems: sme3Dc, af shell10, crankseg 1, ct20stif, F1, fcondp2, ldoor,
s3dkq4m2; optimization: kkt power, mip1; model reduction: bone010; information
retrieval: diego-MM-573x230k. Note that in our experiments, we used a much
broader test set. Matrices discussed here cover the most representative/particular
cases. We conducted our experiments on the two computers summarized in Ta-
ble A.9. Machine M2 was a lightly loaded network server, while M4 was a
dedicated machine.

We compiled our codes with the Intel icc version 11 on M4, and gcc, version
4.3 on M2.

We compiled it on both machines using the CILK++ compiler ([Int09]);
version (“Cilk Arts build 8503”), based on gcc, v.4.2.4. All codes have been
compiled using the -O3 flag only (besides the OpenMP enabling flags).

A.4 Setup for §4.3 Experiments

In order to compare the new approach with previously documented experiments
using RCSR format (see [MFPT10c]), we measured performance on the same
test set of 36 matrices: 12 of them are symmetric (See Table A.10), 12 are
square unsymmetric (See Table A.11), and 12 are non-square (See Table A.12).
For readability reasons, in Sec. 4.4 we left matrices with less significant results
(marked with an asterisk (*), in the tables) out of the plots, so the commentary
on them is indirect. Furthermore, we have used the same two machines (summa-
rized in Table A.13). Recall, that M2 is a lightly loaded network server, while
M4 is a dedicated machine.

For each matrix/cores sample, we ran our RSB code, performing 100 times
the SpMV operation, and we and report the best result. However, timing vari-
ation was below 5%, so our results were consistent. We measured timings using

the POSIX ([pos08]) gettimeofday() function. Figures in section 4.4 depict
results, expressed in MFlops (millions of floating point operations per second).
Conventionally, we counted 2 Flops per nonzero element for non-symmetric ma-
trices, and 4 for symmetric. We use double precision arithmetic (C’s double

type). Our measurements were performed with hot caches; that is, we did not
flush deliberately cache contents between subsequent SpMV’s; therefore, to avoid
artificially high results, all measurements were performed on matrices not fitting
entirely in the caches.

Our codes were compiled with the Intel icc version 11 on M4, and gcc,
version 4.3 on M2. In Section 4.4.3 we compare our results to that obtained with
a publicly available CSB prototype (see §2.2 or [BFF+09]). On both machines we
compiled it using the CILK++ compiler; version (“Cilk Arts build 8503”),
based on the gcc (GNU C Compiler), v.4.2.4. To unify the test environment,
all codes were compiled using the -O3 flag only (besides the OpenMP enabling
flags).

A.5 Setup for §5 Experiments

Our experimental setup is similar to that of [MFG+10] (or §A.4) : same ma-
chines, same compilers, same methodology, but for space reasons, we selected
only an essential subset of the matrices used there (see Table A.14). We com-
piled and ran our codes on machines M4 (AMD Opteron 2354; 2×4-core CPU;
caches: 2×2MB L3, 4× 512KB L2 and 64KB L1) and M2 (Intel Xeon 5670;
2×6-core CPU; caches: 2×12MB L3, 4× 256KB L2 and 32KB L1), using -O3

as the only optimization flag, with icc v.11 on M4, and gcc v.4.3 on M2. The
time samples employed are the best ones, after 100 runs for the SpMV operation,
and 10 runs for the constructor. M2 is a lightly loaded network server.

A.6 Setup for §B Experiments

In Table A.15, we show some information about machines M6 and M8, which
were used for the experiments reported in §B.

161

matrix r c nnz nnz/r
12month1 12471 872622 22624727 1814.19
atmosmodl 1489752 1489752 10319760 6.93
av41092 41092 41092 1683902 40.98
c8 mat11 I 4562 5761 2462970 539.89
cage15 5154859 5154859 99199551 19.24
cont11 l 1468599 1961394 5382999 3.67
diego-MM-573x230k 573286 230401 41694697 72.73
GL7d19 1911130 1955309 37322725 19.53
lhr71 70304 70304 1528092 21.74
neos 479119 515905 1526794 3.19
patents 3774768 3774768 14970767 3.97
raefsky3 21200 21200 1488768 70.22
rail2586 2586 923269 8011362 3097.97
rajat31 4690002 4690002 20316253 4.33
rel9 9888048 274669 23667183 2.39
relat9 12360060 549336 38955420 3.15
rma10 46835 46835 2374001 50.69
Rucci1 1977885 109900 7791168 3.94
sme3Dc 42930 42930 3148656 73.34
spal 004 10203 321696 46168124 4524.96
torso1 116158 116158 8516500 73.32
tp-6 142752 1014301 11537419 80.82
venkat01 62424 62424 1717792 27.52
wb-edu 9845725 9845725 57156537 5.81

Table A.7: General matrices for §4.1 experiments.

matrix r c nnz nnz/r
af shell10 1508065 1508065 27090195 17.96
BenElechi1 245874 245874 6698185 27.24
bone010 986703 986703 36326514 36.82
crankseg 1 52804 52804 5333507 101.01
ct20stif 52329 52329 1375396 26.28
F1 343791 343791 13590452 39.53
fcondp2 201822 201822 5748069 28.48
kkt power 2063494 2063494 8130343 3.94
ldoor 952203 952203 23737339 24.93
mip1 66463 66463 5209641 78.38
nd24k 72000 72000 14393817 199.91
s3dkq4m2 90449 90449 2455670 27.15

Table A.8: Symmetric matrices for §4.1 experiments.

machine model cpus× data caches
cores

M4 Intel Xeon 5670 2×6 2xL3,2x6xL2,2x6xL1:
6-Core L3:12MB/16-w/64B
2.93GHz L2:256KB/8-w/64B

L1:32KB/8-w/64B
M2 AMD Opteron 2354 2× 4 2xL3,2x4xL2,2x4xL1:

Quad-Core L3:2MB/32-w/64B
2.2GHz L2:512KB/16-w/64B

L1:64KB/2-w/64B

Table A.9: Test machines for §4.1 experiments.

163

matrix r c nnz nnz/r
af shell10 1508065 1508065 27090195 17.96
BenElechi1 245874 245874 6698185 27.24
bone010 986703 986703 36326514 36.82
crankseg 1 52804 52804 5333507 101.01
ct20stif 52329 52329 1375396 26.28
F1 343791 343791 13590452 39.53
fcondp2 201822 201822 5748069 28.48
kkt power 2063494 2063494 8130343 3.94
ldoor 952203 952203 23737339 24.93
mip1* 66463 66463 5209641 78.38
nd24k 72000 72000 14393817 199.91
s3dkq4m2 90449 90449 2455670 27.15

Table A.10: Symmetric matrices for §4.3 experiments.

matrix r c nnz nnz/r
atmosmodl 1489752 1489752 10319760 6.93
av41092 41092 41092 1683902 40.98
cage15 5154859 5154859 99199551 19.24
lhr71 70304 70304 1528092 21.74
patents 3774768 3774768 14970767 3.97
raefsky3 21200 21200 1488768 70.22
rajat31 4690002 4690002 20316253 4.33
rma10* 46835 46835 2374001 50.69
sme3Dc 42930 42930 3148656 73.34
torso1 116158 116158 8516500 73.32
venkat01 62424 62424 1717792 27.52
wb-edu 9845725 9845725 57156537 5.81

Table A.11: General square matrices for §4.3 experiments.

matrix r c nnz nnz/r
12month1 12471 872622 22624727 1814.19
c8 mat11 I 4562 5761 2462970 539.89
cont11 l 1468599 1961394 5382999 3.67
diego-MM-573x230k 573286 230401 41694697 72.73
GL7d19 1911130 1955309 37322725 19.53
neos* 479119 515905 1526794 3.19
rail2586 2586 923269 8011362 3097.97
rel9 9888048 274669 23667183 2.39
relat9 12360060 549336 38955420 3.15
Rucci1 1977885 109900 7791168 3.94
spal 004 10203 321696 46168124 4524.96
tp-6 142752 1014301 11537419 80.82

Table A.12: General non-square matrices for §4.3 experiments.

machine model cpus× data caches
cores

M4 Intel Xeon 5670 2×6 2xL3,2x6xL2,2x6xL1:
6-Core L3:12MB/16-w/64B
2.93GHz L2:256KB/8-w/64B

L1:32KB/8-w/64B
M2 AMD Opteron 2354 2× 4 2xL3,2x4xL2,2x4xL1:

Quad-Core L3:2MB/32-w/64B
2.2GHz L2:512KB/16-w/64B

L1:64KB/2-w/64B

Table A.13: Test machines for §4.3 experiments.

165

matrix symm r c nnz nnz/r
12month1 G 12471 872622 22624727 1814.19
af shell10 S 1508065 1508065 27090195 17.96
cage15 G 5154859 5154859 99199551 19.24
cont11 l G 1468599 1961394 5382999 3.67
fcondp2 S 201822 201822 5748069 28.48
GL7d19 G 1911130 1955309 37322725 19.53
ldoor S 952203 952203 23737339 24.93
neos G 479119 515905 1526794 3.19
patents G 3774768 3774768 14970767 3.97
rail2586 G 2586 923269 8011362 3097.97
relat9 G 12360060 549336 38955420 3.15
sme3Dc G 42930 42930 3148656 73.34
wb-edu G 9845725 9845725 57156537 5.81

Table A.14: Matrices test-set for §5 experiments.

machine model cpus× data caches
cores

M8 Intel Pentium III (Coppermine) 1×1 1x1xL2,1x1xL1:

866MHz L2:256KB/8-w/32B
L1:16KB/4-w/32B

M6 Intel Atom N450 (Pineview) 1× 2 1x1xL2,1x1xL1:
Two-Core
1.66GHz L2:512KB/8-w/64B

L1:24KB/6-w/64B

Table A.15: Test machines for §B experiments. To use Intel terminology, the
number of “hardware” cores on the M6 machine is really only one, with two
being the number of hyper-threads available to the system.

B
Appendix: patterns of indirect memory

access, with stride

In this appendix chapter, we present a basic experiment quantifying the rela-
tive performance in accessing an array directly or by means of an index vector
indirection. In either case, we consider only array read operations. This section
gives support to the discussion in §1.4.

The target of our experimentation will be both the cache subsystem and the
(automatic) hardware prefetch engine. Except one machine without an auto-
matic prefetch engine, the remaining machines have both. Since neither the
hardware prefetch engine, nor the cache subsystem could be turned off, we
will use some architecture specific limit to bypass their effect. For the hard-
ware prefetch equipped machines, it is documented (see [Int08a, § 2.4.2]) that a
(bytes) distance between temporally local accesses exceeding 512, will not trig-
ger an anticipated fetch of memory locations into the cache hierarchy. Therefore,
it is sufficient to access memory repeatedly with a fixed stride value exceeding
this distance (called trigger threshold—tt), to disable automatic prefetch.

We perform our experiment on four machines, with either 64-bit (ws = 8)or
32-bit word sizes (ws = 4). In our experimental code, we allocate a fixed number
of words, say wt, into a dynamically allocated, appropriately aligned array. We
want to scan repeatedly this array, with an increasing stride, from 1 to κ. We
want each visit to touch the same number of different locations, say wn. To
arrange this, we set wtws = κwnws. In this way, when accessing the array with
unitary stride, only the first wn words will be touched. With maximal stride
(κ), the same number of words (wn) will be touched. This time, however, there

167

will be a gap of κws bytes separating each word’s address.
We perform three types of visit, for measuring three different access types.

For each given visit type and stride value combination, we measure the rate of
accessed words per second, by repeating a fixed number of times (ln) the scan
over the whole array.1

The three visit types are:

• Linear, direct. Elements 1, wn are repeatedly accessed, in sequence, for
each stride value in s ∈ [1, κ]; that is, for stride value s, elements at array
offset swsi, with i ∈ [1, wn] are accessed.

• Linear, indirect. At each array index i in 1, ..., wn, we fill a helper (wn-
sized) array with exactly value i at location i. Then we access the main
array at these locations, by using the helper array as an indices array.
The memory pattern in accessing the main array, thus, is the same as the
linear, direct scan. Overall, however, the helper array is accessed in order
to load the index, for each location. And just as in the direct, linear scan,
we apply a growing stride.

• Pseudo-random, indirect. We compute a repeatable pseudo-random se-
quence of numbers (not a permutation of 1, .., wn), and assign this sequence
to an indices array. Then, we use the indices array to access the data array
repeatedly, at the specified pseudo-random locations, again indirectly. We
repeat for each stride value (and with the same pseudo-random sequence).
Note that since we do not generate a permutation, multiple visits to the
same address are possible.

Producing a valid, general micro-benchmark is a tricky task. The one we
have specified so far is rather simple, but it serves well our purpose: finding the
bottom line for memory access speed. To be sure some compiler optimization
would not drive the program into producing fake results, we have compiled (and
we ran) the benchmark program in two instances: one with a quite high compiler
optimization flag (-O3), and another with no optimization at all (-O0). As we
will see, both program versions will converge to the same speed rates, for all
three memory scan types.

1When accessing each given location, we sum its contents (an integer sum is an operation
so cheap it should not have impact on the benchmark) to an accumulator variable. Then, at
the program’s end, a hash value of the sum accumulated over all the visits is printed out.
This is a trick for preventing the compiler from some optimizations, which could completely
remove the loop code from the compiled code.

1 2 4 8 16 32 64 128 256 512 1024

20
40

60
80

10
0

M6−IND−O0
M6−IND−O3
M6−LIN−O0
M6−LIN−O3
M6−RND−O0
M6−RND−O3
M8−IND−O0
M8−IND−O3
M8−LIN−O0
M8−LIN−O3
M8−RND−O0
M8−RND−O3

Relative Memory Scan Speeds

stride (#of words)

w
or

ds
 p

er
 s

ec
on

d
to

 1
−

st
rid

e
(%

)

Figure B.1: The relative performance of some linear scan primitives on M6,M8.
We have parameters ws = 8, κ = 1024, wn = 128 · 1024. One of the lines for M8
looks like it is not monotonically decreasing—indeed, that line represents a scan
whose speed is almost constantly at the bottom; the plot only magnifies noise
present in the measurement. For some specification of machines M8 and M6
see Table A.15.

In each one of the presented plots, for each machine we show six curves:
three scans performed by the same program, compiled twice; with and without
compiler optimizations.

We have two types of plots: the first one, depicting the words per second rate
each visit type has achieved, for each stride value; and the second one, showing
this rate normalized by the value at unitary stride (individually, for each one of
the six curves).

In Fig. B.2, we see the normalized rate curves for the two faster machines,
M4 and M2. In contrast, see Fig. B.1, where the old M8 (an Intel Pentium
3—an architecture without an automatic hardware prefetch engine) machine
and the recent but weak M6 were used.

169

For all machines, we witness a convergence of the six curves down to about
20% of the peak. Machine M8 shows a lesser relative loss in performance for
some indirect accesses, but the remaining curves for it fall down below 20% of
peak speed.

The faster machines loose less (that is, their curves descent slower), in both
the indirect linear and indirect random access modes. The explanation of this
is simple: indirect accesses were already the slowest ones, because of the depen-
dency on address computation, and thus, the possible speed drop was less. The
absolute access rates are shown in Fig. B.3 and Fig. B.4.

The trigger threshold for the prefetch-equipped machines was no more than
512 bytes. Since M4 and M2 are 64 bit machines, this means that a stride higher
than 512/8 = 64 is enough to prevent the prefetch circuitry from triggering.
Indeed, at stride values from 128 on, we do not notice a further speed drop,
since latency in memory access is completely exposed.

1 2 4 8 16 32 64 128 256 512 1024

20
40

60
80

10
0

M2−IND−O0
M2−IND−O3
M2−LIN−O0
M2−LIN−O3
M2−RND−O0
M2−RND−O3
M4−IND−O0
M4−IND−O3
M4−LIN−O0
M4−LIN−O3
M4−RND−O0
M4−RND−O3

Relative Memory Scan Speeds

stride (#of words)

w
or

ds
 p

er
 s

ec
on

d
to

 1
−

st
rid

e
(%

)

Figure B.2: The relative performance of some linear scan primitives on M2,M4.
We have parameters ws = 8, κ = 1024, wn = 128 · 1024. For some specification
of machines M4 and M2 see Table A.9.

1 2 4 8 16 32 64 128 256 512 1024

20
0

40
0

60
0

80
0

10
00

M4−IND−O0
M4−IND−O3
M4−LIN−O0
M4−LIN−O3
M4−RND−O0
M4−RND−O3

Absolute Memory Scan Speeds

stride (#of words)

m
ill

io
ns

 o
f w

or
ds

 p
er

 s
ec

on
d

Figure B.3: The absolute performance of some linear scan primitives on M4.

In this discussion, we did not mention cache parameters, because our interest
was to expose the latency, bypassing both cache usage and hardware prefetch.

However, there are some facts we would like to point out. For stride values
up to the number of words in a cache line (for 64 bit, 64/8 = 8 bytes), we
have some cache line reuse: for instance, having stride 2, half of each cache line
data is reused. When stride is higher than this, but still lower than the trigger
threshold value divided by word size, cache is not reused at all: each cache line is
used exactly once. Indeed, it is between these values, that we notice the steepest
descent on each of the curves shown. We also notice that on the newer machines
the curves tend to drop the most on stride values higher than on the weaker or
older machines (see Fig. B.1, Fig. B.2).

Notice that one machine (M8:see Fig. B.1) does not have an automatic
prefetch engine, and for this reason, it reaches its bottom line for memory access
speed at stride 8: much before the other machines do; see Fig. B.5.

We omit curves for the absolute scan speeds of machine M2, as these are
similar to that of M4.

171

From this small experiment we conclude that codes where memory reuse
is low and indirect addressing occur—and this is the case for sparse matrices
codes—making good use of the prefetch hardware is an important factor to
performance.

1 2 4 8 16 32 64 128 256 512 1024

0
50

10
0

15
0 M6−IND−O0

M6−IND−O3
M6−LIN−O0
M6−LIN−O3
M6−RND−O0
M6−RND−O3

Absolute Memory Scan Speeds

stride (#of words)

m
ill

io
ns

 o
f w

or
ds

 p
er

 s
ec

on
d

Figure B.4: The absolute performance of some linear scan primitives on M6.

1 2 4 8 16 32 64 128 256 512 1024

0
50

10
0

15
0

M8−IND−O0
M8−IND−O3
M8−LIN−O0
M8−LIN−O3
M8−RND−O0
M8−RND−O3

Absolute Memory Scan Speeds

stride (#of words)

m
ill

io
ns

 o
f w

or
ds

 p
er

 s
ec

on
d

Figure B.5: The absolute performance of some linear scan primitives on M8.

173

C
Appendix: some more experiments with

RSB

C.1 Description of Experiments

Earlier in this thesis document (see §2.3), we have explained that our way of
organizing a sparse matrix in submatrices (or sparse blocks: see §2.2) is a par-
ticular form of cache blocking. This organization of a sparse matrix was con-
ceived to reduce cache misses during the shared memory parallel execution of
SpMV,SpMV-T,SpSV, or SpSV-T. It is known (see §2.1 and the mentioned liter-
ature) that an effective implementation of a cache blocking technique prevents
excessive cache misses (and as a direct consequence, raises the floating point
rate) on matrices larger (in terms of memory footprint) than the outermost (or
higher level) cache sizes. In this appendix chapter we present the results of a
number of experiments (performed on machine M4; see Table A.9) aimed at the
empiric assessment of the quality of our design and (shared memory parallel)
implementation for both SpMV and its transposed variant (SpMV-T). In §1.1
and §1.2, we have discussed the inefficiencies of serial SpMV-T on row-ordered
formats, like CSR/COR. It is also generally known that a parallel SpMV-T
formulation for CSR/COR is seldom expected to be as efficient as SpMV (see
Buluç et al. [BFF+09, s.1]). The RSB format attempts at mitigating these in-
efficiencies, by partitioning the matrix in sparse blocks which are laid out in
memory along a space filling curve-like ordering. See §2.3.3 for a definition and
discussion of this ordering, and §5 for the details of a possible build procedure.
The organization of blocks we propose allows a straightforward implementation

175

of SpMV-T, both serial (see the sketch of SpMV-T for RCSR/RSB in §2.3.1)
and parallel (see the discussion in §3.1). Due to space and time constraints,
we cannot go through a very detailed discussion: we leave a thorough analysis
of results as future work. Nevertheless, given our choice of experiments1, the
obtained results give evidence that our arguments about the efficiency of RSB
for both SpMV and SpMV-T are sound. Throughout this appendix, we compare
the SpMV performance of our RSB implementation to that of a proprietary,
highly optimized, and architecture specific implementation of CSR routines in
Intel’s Math Kernels Library (MKL)2. In §C.2 we look at the performance of
SpMV and SpMV-T, when running on the maximum number of threads; in §C.3
we look at the performance of SpMV,SpMV-T,SpSV/SpSV-T, but using only
one thread3. Then, in §C.4 we look again at the performance of SpMV and
SpMV-T; but this time on the largest (by nonzeroes count) matrices available
in the University of Florida sparse matrix collection (see [Dav10]) which have
not benchmarked in §C.2. Information for the symmetric matrices is shown in
Table C.4; information for the unsymmetric ones in Table C.5. Some of the
matrices we use in this appendix (the ones labeled with the -l suffix) are lower
factors of an LU decomposition (see §A.2 for details) of the corresponding ma-
trix, and thus with a substantially different nonzeroes pattern. Finally, we sum
up our conclusions in §C.5.

C.2 Results for SpMV and SpMV-T, versus MKL

We have grouped results of a 12-threaded (the maximum available on M4),
comparative run of both SpMV and SpMV-T in three plots: Fig. C.1 for square
matrices, Fig. C.2 for non-square matrices, Fig. C.3 for symmetric (and thus,
square) matrices. By the definition of symmetry, we have that SpMV-T on a
symmetric matrix yields the same results as SpMV, (and in our implementation,
using the same code): therefore Fig. C.3 shows only SpMV results. We consider
12 threads only (the maximum available) on the matrices summarized in Tables
C.2, C.3, C.4. Notice how on most matrices, RSB ’s SpMV performs better than
MKL’s, and the gap between transposed and non-transposed SpMV is much
smaller in RSB than it is in MKL.

1From these experiments, we have excluded smaller matrices (the ones with less than 2
millions of nonzeroes), as they may lead to cache reuse between subsequent SpMVs.

2Our copy of MKL was version “10.3-0, Product, 20100927”. The MKL library runs
(by design) on Intel architectures only.

3For the triangular solve operation we compare only single threaded executions, as MKL
implementation of SpSV appears to be serial (its speed does not scale up with more threads).

M
F

lo
ps

/s
ec

MKL−N12 MKL−T12 RSB−N12 RSB−T12

3Dspectralwave

ASIC_320k

atm
osm

odl

cage14

cage15

crystk03−l

ex11−l

Freescale1

lhr10−l

m
em

plus−l

patents

raefsky3−l

raefsky4−l

rajat31

rm
a10

sm
e3Dc

stom
ach

torso1

TSOPF_RS_b2383

wang4−l

wb−edu

wikipedia−20060925

0
10

00
20

00
30

00
40

00
50

00

Figure C.1: SpMV performance on M4, versus MKL, 12 threads, square ma-
trices from Table C.2.

M
F

lo
ps

/s
ec

MKL−N12 MKL−T12 RSB−N12 RSB−T12

12m
onth1

c8_m
at11_I

ch8−8−b5

cont11_l

diego−sm
txM

M
−573x230k

GL7d19

GL7d20

IM
DB

rail2586

rail4284

rel9
relat9

sls spal_004

tp−6

0
10

00
20

00
30

00
40

00

Figure C.2: SpMV performance on M4, versus MKL, 12 threads, non-square
matrices from Table C.3.

177

matrix r c nnz nnz/r
af shell9 504855 504855 9046865 17.92
as-Skitter 1696415 1696415 11095298 6.54
audikw 1 943695 943695 39297771 41.64
gsm 106857 589446 589446 11174185 18.96
human gene1 22283 22283 12345963 554.05
human gene2 14340 14340 9041364 630.50
mouse gene 45101 45101 14506196 321.64
nlpkkt120 3542400 3542400 50194096 14.17
nlpkkt160 8345600 8345600 118931856 14.25
pkustk14 151926 151926 7494215 49.33
Si41Ge41H72 185639 185639 7598452 40.93

Table C.1: Additional large symmetric matrices.

C.3 Single Threaded, RSB versus MKL

Although importance of the peak performance (parallel) execution of SpMV/SpMV-
T is critical to many applications, it is also interesting to compare the efficiency
of our format for single threaded execution. As in the previous section, we have
grouped results for square matrices (see Fig. C.4), non-square ones (see Fig. C.5),
and (square) symmetric matrices (see Fig. C.6). We note that our implemen-
tation of RSB outperforms MKL in nearly all of the considered cases. Since
it is highly likely that the MKL implementation applies machine specific code
optimization techniques (while we did not), we draw two immediate conclusions.
The first one is that presumably, the memory layout and short indices usage of
RSB (see §4) played a role in the efficiency of RSB. The second one is that it is
very likely that by applying machine-specific code optimizations techniques to
the RSB implementation, one could obtain even higher performance. Finally, in
Fig. C.7 the performance of RSB is compared to that of MKL when using a
single thread in the execution of the SpSV kernel. Notice that results are com-
parable. Since the MKL implementation of SpSV/SpSV-T appears to be serial,
there is no means of comparison to MKL’s partially parallel implementation
(see §3.2).

M
F

lo
ps

/s
ec

MKL12 RSB12

af_0_k101

af_shell10

audikw_1

BenElechi1

bm
w3_2

bm
wcra_1

bone010

boneS01

boneS10

crankseg_1

ecology1

ecology2

F1 fcondp2

Ga41As41H72

hood
inline_1

kkt_power

ldoor
m

ip1
m

sdoor

nd12k

nd24k

nlpkkt120

parabolic_fem

s3dkq4m
2

shipsec8

0
20

00
40

00
60

00
80

00

Figure C.3: SpMV performance on M4, versus MKL, 12 threads, symmetric
matrices from Table C.4.

M
F

lo
ps

/s
ec

MKL−N1 MKL−T1 RSB−N1 RSB−T1

3Dspectralwave

ASIC_320k

atm
osm

odl

cage14

cage15

crystk03−l

ex11−l

Freescale1

lhr10−l

m
em

plus−l

patents

raefsky3−l

raefsky4−l

rajat31

rm
a10

sm
e3Dc

stom
ach

torso1

TSOPF_RS_b2383

wang4−l

wb−edu

wikipedia−20060925

0
50

0
10

00
15

00
20

00

Figure C.4: SpMV performance on M4, versus MKL, one thread, square ma-
trices.

179

M
F

lo
ps

/s
ec

MKL−N1 MKL−T1 RSB−N1 RSB−T1

12m
onth1

c8_m
at11_I

ch8−8−b5

cont11_l

diego−sm
txM

M
−573x230k

GL7d19

GL7d20

IM
DB

rail2586

rail4284

rel9
relat9

sls spal_004

tp−6

0
50

0
10

00
15

00
20

00

Figure C.5: SpMV performance on M4, versus MKL, one thread, non-square
matrices.

M
F

lo
ps

/s
ec

MKL1 RSB1

af_0_k101

af_shell10

audikw_1

BenElechi1

bm
w3_2

bm
wcra_1

bone010

boneS01

boneS10

crankseg_1

ecology1

ecology2

F1 fcondp2

Ga41As41H72

hood
inline_1

kkt_power

ldoor
m

ip1
m

sdoor

nd12k

nd24k

nlpkkt120

parabolic_fem

s3dkq4m
2

shipsec8

0
50

0
10

00
15

00
20

00

Figure C.6: SpMV performance on M4, versus MKL, one thread, symmetric
matrices.

matrix r c nnz nnz/r
3Dspectralwave 680943 680943 17165766 25.21
ASIC 320k 321821 321821 2635364 8.19
atmosmodl 1489752 1489752 10319760 6.93
cage14 1505785 1505785 27130349 18.02
cage15 5154859 5154859 99199551 19.24
crystk03-l 24696 24696 13674087 553.70
ex11-l 16614 16614 6313293 380.00
Freescale1 3428755 3428755 18920347 5.52
lhr10-l 10672 10672 10749856 1007.30
memplus-l 17758 17758 11102358 625.20
patents 3774768 3774768 14970767 3.97
raefsky3-l 21200 21200 14944936 704.95
raefsky4-l 19779 19779 16534538 835.96
rajat31 4690002 4690002 20316253 4.33
rma10 46835 46835 2374001 50.69
sme3Dc 42930 42930 3148656 73.34
stomach 213360 213360 3021648 14.16
torso1 116158 116158 8516500 73.32
TSOPF RS b2383 38120 38120 16171169 424.22
wang4-l 26068 26068 22689509 870.40
wb-edu 9845725 9845725 57156537 5.81
wikipedia-20060925 2983494 2983494 37269096 12.49

Table C.2: Additional square matrices.

C.4 Big Matrices, versus MKL

Here we compare performance of SpMV/SpMV-T on a sample of the biggest
(in terms of nonzeroes) matrices from the University of Florida collection not
already considered in §C.2. Matrices data is summarized in Table C.4 and Ta-
ble C.5.

With 12 threads (the maximum), see Fig. C.8 for unsymmetric matrices, and
Fig. C.11 for the symmetric ones. For a single threaded execution, see Fig. C.9
for unsymmetric matrices, and Fig. C.10 for the symmetric ones. By comparing
Fig. C.8 to Fig. C.9, we see that the advantage of RSB over MKL increases
with the cores count, on unsymmetric matrices. To a lesser degree, this happens

181

M
F

lo
ps

/s
ec

MKL−N1 MKL−T1 RSB−N1 RSB−T1

lhr10−lower_lu

lhr10−lower_lup

ohne2

ohne2−colam
d

para−9

raefsky4−lower_lu

raefsky4−lower_lup

rajat31−colam
d

torso1

wang4−lower_lu

wang4−lower_lup

0
10

0
20

0
30

0
40

0
50

0
60

0
70

0

Figure C.7: SpSV performance on M4, versus MKL, single thread.

M
F

lo
ps

/s
ec

MKL−N12 MKL−T12 RSB−N12 RSB−T12

cage15

circuit5M

circuit5M
_dc

fem
_hifreq_circuit

GL7d17

GL7d18

GL7d19

GL7d20

GL7d21

patents

RM
07R

soc−LiveJournal1

spal_004

TSOPF_RS_b2383

wb−edu

wikipedia−20070206

0
10

00
20

00
30

00

Figure C.8: SpMV performance on M4, versus MKL, 12 threads, large unsym-
metric matrices summarized in Table C.5 .

M
F

lo
ps

/s
ec

MKL−N1 MKL−T1 RSB−N1 RSB−T1

cage15

circuit5M

circuit5M
_dc

fem
_hifreq_circuit

GL7d17

GL7d18

GL7d19

GL7d20

GL7d21

patents

RM
07R

soc−LiveJournal1

spal_004

TSOPF_RS_b2383

wb−edu

wikipedia−20070206

0
20

0
40

0
60

0
80

0
12

00

Figure C.9: SpMV performance on M4, versus MKL, 1 thread, large unsym-
metric matrices.

M
F

lo
ps

/s
ec

MKL−N1 RSB−N1

af_shell9

as−Skitter

audikw_1

gsm
_106857

hum
an_gene1

hum
an_gene2

m
ouse_gene

nlpkkt120

nlpkkt160

pkustk14

Si41Ge41H72

0
50

0
10

00
15

00

Figure C.10: SpMV performance on M4, versus MKL, 1 threads large symmet-
ric matrices summarized in Table C.4 .

183

matrix r c nnz nnz/r
12month1 12471 872622 22624727 1814.19
c8 mat11 I 4562 5761 2462970 539.89
ch8-8-b5 564480 376320 3386880 6.00
cont11 l 1468599 1961394 5382999 3.67
diego-smtxMM-573x230k 573286 230401 41694697 72.73
GL7d19 1911130 1955309 37322725 19.53
GL7d20 1437547 1911130 29893084 20.79
IMDB 428440 896308 3782463 8.83
rail2586 2586 923269 8011362 3097.97
rail4284 4284 1096894 11284032 2633.99
rel9 9888048 274669 23667183 2.39
relat9 12360060 549336 38955420 3.15
sls 1748122 62729 6804304 3.89
spal 004 10203 321696 46168124 4524.96
tp-6 142752 1014301 11537419 80.82

Table C.3: Additional non-square matrices.

on symmetric matrices also; compare Fig. C.11 to Fig. C.10. On the symmetric
matrices, however, the single threaded execution of RSB performs better than
MKL.

C.5 Concluding remarks

The experiments presented in this appendix aimed at assessing the performance
of our shared memory parallel implementation of two important computational
kernels (SpMV/SpMV-T). As a reference for comparison, we have used a highly
optimized, proprietary Sparse BLAS implementation: the one present in Intel’s
MKL library.

We can summarize the outcome of our experiments as:

• By noticing the performance gap between (parallel) SpMV and SpMV-
T in MKL, we confirm that with the CSR format (used by MKL) it
is inherently difficult to arrange SpMV-T computations to be as efficient
as SpMV. We also notice that our RSB implementation not only greatly
reduces the performance gap between SpMV and SpMV-T, but performs

matrix r c nnz nnz/r
af shell9 504855 504855 9046865 17.92
as-Skitter 1696415 1696415 11095298 6.54
audikw 1 943695 943695 39297771 41.64
gsm 106857 589446 589446 11174185 18.96
human gene1 22283 22283 12345963 554.05
human gene2 14340 14340 9041364 630.50
mouse gene 45101 45101 14506196 321.64
nlpkkt120 3542400 3542400 50194096 14.17
nlpkkt160 8345600 8345600 118931856 14.25
pkustk14 151926 151926 7494215 49.33
Si41Ge41H72 185639 185639 7598452 40.93

Table C.4: Additional large symmetric matrices.

often consistently better than MKL’s CSR.

• While we are unaware whether MKL uses (dynamical) cache blocking
techniques (see §2.1) or not, we observe that non-parallel (single-threaded)
performance of RSB is comparable, and often better than that of MKL.
By recalling that a single-threaded execution is affected by memory band-
width saturation less than multi-threaded execution is, and given the ab-
sence of machine specific optimizations in our code, our explanation for
the superiority of RSB in the considered cases is that the sparse blocking
and index saving (see §4.1) techniques of RSB have played the difference.

• The performance of RSB ’s symmetric SpMV implementation is almost
always superior to that of MKL. We regard this result as being the com-
bination of the two previous points about SpMV-T4 and cache friendliness.

Therefore, the conclusions we draw are positive: the RSB format not only
favours efficient parallel execution of both SpMV and SpMV-T (matrices which
are large enough to be cache blocked), but it is also ready to accommodate
further, machine specific optimizations, while being readily comparable to an
efficient, commercial library.

An extension of the work we have presented in this appendix would compre-
hend a detailed evaluation of results, with a comparison to the CSB prototype

4Recall from §1.4 that symmetric kernels have a memory access pattern that combines that
of both SpMV and SpMV-T.

185

matrix r c nnz nnz/r
cage15 5154859 5154859 99199551 19.24
circuit5M 5558326 5558326 59524291 10.71
circuit5M dc 3523317 3523317 19194193 5.45
fem hifreq circuit 491100 491100 20239237 41.21
GL7d17 1548650 955128 25978098 16.77
GL7d18 1955309 1548650 35590540 18.20
GL7d19 1911130 1955309 37322725 19.53
GL7d20 1437547 1911130 29893084 20.79
GL7d21 822922 1437547 18174775 22.09
patents 3774768 3774768 14970767 3.97
RM07R 381689 381689 37464962 98.16
soc-LiveJournal1 4847571 4847571 68993773 14.23
spal 004 10203 321696 46168124 4524.96
TSOPF RS b2383 38120 38120 16171169 424.22
wb-edu 9845725 9845725 57156537 5.81
wikipedia-20070206 3566907 3566907 45030389 12.62

Table C.5: Additional large general matrices.

implementation (see §2.2) also; recall that the CSB format was designed for
being friendly both to memory/cache traffic and to the shared memory parallel
SpMV-T.

M
F

lo
ps

/s
ec

MKL−N12 RSB−N12

af_shell9

as−Skitter

audikw_1

gsm
_106857

hum
an_gene1

hum
an_gene2

m
ouse_gene

nlpkkt120

nlpkkt160

pkustk14

Si41Ge41H72

0
10

00
20

00
30

00
40

00
50

00
60

00

Figure C.11: SpMV performance on M4, versus MKL, 12 threads, large sym-
metric matrices.

187

D
Appendix: notation and conventions

Throughout the whole text, we tried to be consistent with the traditional no-
tation used for expressing algorithms in most textbooks, as that of Cormen et
al.: [CLRS09]. Additionally, we follow a number of style conventions commonly
encountered in numerical linear algebra books, prominently, that of Golub et
al.: [GL96, Ch. 1]. In this Matlab-like style, we access numerical vectors or
matrices, with 1-based indices.

We also use subscripts (often characters i, j or k, l, or p, q) to mean indices,
and lowercase letters for submatrices or individual elements of matrices. We
refer to the element of matrix A at row i and column j with aij . Sometimes, for
clarity, we use a comma between the indices, as in ai,j+1.

So, for A =

(
11 12
21 22

)
, we have a11 = 11, a21 = 21, a12 = 12, a22 = 22.

As encouraged by Matlab’s programming language, we have a notation for
submatrices; that is ai0:i1,j0:j1 refer to that submatrix of A which is enclosed
between rows i0 and i1 inclusive, and columns j0 and j1 inclusive.

So, if B =

11 12 13
21 22 23
31 32 33

, then b1:2,2:3 = b1:1+1,2:4−1 =

(
12 13
22 23

)
and

b1,: = b1,1:3 =
(
11 12 13

)
. We use symbols α, β, ε, µ for scalar constants,

characters x, y, z for vectors, m, k, n for integer scalar numbers, and uppercase
characters A,L,U,D, T for matrices. We indicate the transpose of A with AT .

When we wish to express an assignment, we use the left arrow (“←”) pointing
from the expression being evaluated to the variable being assigned. So, with
y ← βy + αAT x , we are overwriting the y vector variable, with its value scaled

189

by β, and adding the product of the αA matrix transposed, by the x vector.
In the algorithms, we use the “=” sign to express equality, not assignment.
Although linear algebra assumes operation on fields (as real or complex num-

bers are), the computer representations of numbers we work with do not have
the field property1, and we leave the accurate study of the numerical properties
of our algorithms as a separate problem.

In many algorithms, we use uppercase acronyms for index arrays (arrays
whose entries are used to access other arrays); i.e.: IA = (1, 2, 3). With these
arrays, we follow the convention of having 1-based index entries.

Sometimes (e.g.: Fig. 5.5), we have used square brackets for arrays or index
arrays; so rather than using IA = (11, 22, 33), we have used IA = [11, 22, 33].
This choice has been motivated by the context (non-numerical algorithms, possi-
ble ambiguities if we had used round brackets for arrays access). When accessing
arrays, we use the chosen bracket notation, always 1−based; so in both the two
above mentioned cases, we have IA(2) = 22, IA[2] = 22, IA(1 : 2) = (11, 22)
and IA[1 : 2] = [11, 22].

In §5, we also use some more advanced Matlab notation; that of struct

variables (which could be regarded as fixed key-value pairs). Namely, we use a
dot (“.”) on a variable identifier to access its members. So, s.m ← s.nnz − 1
means that we assign to member m of variable s, the value of member nnz
of variable s, subtracted by one. In §5, we also use some custom notation: we

use “
p←” to signify assignment to a pointer variable, which likewise to the C

language, stores an address, and allows its use with a bracketed notation—that
is, array semantics. Only in the case of pointer assignment, we use a 0-based

notation. So, if V = (11, 22, 33), then P
p← V + 1 means that P (1) = 22 and

P (2) = 33; this because P points to the second element of V .
An additional notation we use is that of parallel loops, used in §3 and §5. We

have used two parallel constructs: begin parallel/end parallel, and parallel
foreach. In the first construct, a shared memory parallel region is created;
that is, newly declared variables are treated as private to a given execution
thread, while the previously allocated variables are assumed to remain shared.
The parallel foreach construct is similar when it regards the scoping of its
variables. Differently from the previous construct, this one iterates the execution
of a given region for each possible value available over the range of the foreach
construct, by assigning values to the threads as they become available.

In the algorithms listings, we often insert comments, enclosed by “/*” and
“*/” markers.

1For instance, with floating point numbers, multiplication is not distributive over addition.

Bibliography

[AMD07] AMD Corporation. AMD64 Architecture Programmer’s Manual
Volume 1: Application Programming Rev 3.14, 2007.

[APJ+07] Buttari Alfredo, Luszczek Piotr, Kurzak Jakub, Dongarra Jack,
and Bosilca George. SCOP3: A rough guide to scientific computing
on the PlayStation 3. Technical report, Innovative Computing
Laboratory, University of Tennessee Knoxville, April 2007. (UT-
CS-07-595).

[Arn10] Jörg Arndt. Matters Computational. Springer, 2010.

[BA06] David Bateman and Andy Adler. Sparse matrix implementation
in Octave. In Octave Workshop, NIST, Gaithersburg, MD, USA,
April 20-21, 2006, 2006.

[BB09] Muthu Manikandan Baskaran and Rajesh Bordawekar. Optimiz-
ing sparse Matrix-Vector multiplication on GPUs. Technical re-
port, IBM Corporation, 2009.

[BBC+94] R. Barrett, M. Berry, T. F. Chan, J. Demmel, J. Donato, J. Don-
garra, V. Eijkhout, R. Pozo, C. Romine, and H. Van der Vorst.
Templates for the Solution of Linear Systems: Building Blocks for
Iterative Methods, 2nd Edition. SIAM, Philadelphia, PA, 1994.

[BBKW98] Aart J. C. Bik, Peter Brinkhaus, Peter M. W. Knijnenburg, and
Harry A. G. Wijshoff. The automatic generation of sparse primi-
tives. ACM Trans. Math. Softw., 24(2):190–225, 1998.

[BBW97] Aart J. C. Bik, Peter J. H. Brinkhaus, and Harry A. G. Wijshoff.
The sparse compiler MT1: A reference guide. Technical report,
Leiden University, The Nederlands, 1997.

[Bel66] L. A. Belady. A study of replacement algorithms for a virtual-
storage computer. IBM Syst. J., 5(2):78–101, 1966.

[BELF07] Alfredo Buttari, Victor Eijkhout, Julien Langou, and Salvatore
Filippone. Performance optimization and modeling of blocked
sparse kernels. IJHPCA, 21:467–484, 2007.

191

[BFF+09] Aydın Buluç, Jeremy T. Fineman, Matteo Frigo, John R. Gilbert,
and Charles E. Leiserson. Parallel sparse matrix-vector and
matrix-transpose-vector multiplication using compressed sparse
blocks. In Friedhelm Meyer auf der Heide and Michael A. Bender,
editors, SPAA, pages 233–244. ACM, 2009.

[BG08] Aydın Buluç and John R. Gilbert. On the Representation and
Multiplication of Hypersparse Matrices. In IEEE International
Parallel and Distributed Processing Symposium (IPDPS 2008),
April 2008.

[BJK+95] Robert D. Blumofe, Christopher F. Joerg, Bradley C. Kuszmaul,
Charles E. Leiserson, Keith H. Randall, and Yuli Zhou. Cilk:
An efficient multithreaded runtime system. In Proceedings of the
Fifth ACM SIGPLAN Symposium on Principles and Practice of
Parallel Programming (PPoPP), pages 207–216, Santa Barbara,
California, July 1995.

[Bul10] Aydin Buluç. Linear Algebraic Primitives for Parallel Com-
puting on Large Graphs. PhD thesis, University of California
Santa Barbara, 2010. Supervised by John R. Gilbert. Available
as of June 2011 on http://gauss.cs.ucsb.edu/~aydin/Buluc_

Dissertation.pdf.

[But06] Alfredo Buttari. Software Tools for Sparse Linear Algebra Compu-
tations. PhD thesis, Università degli studi di Roma Tor Vergata,
2006. Supervised by Salvatore Tucci. Available as of June 2011
on http://graal.ens-lyon.fr/~abuttari/mypapers/thesis.

pdf.

[BW96] Aart J.C. Bik and Harry A.G. Wijshoff. Automatic data struc-
ture selection and transformation for sparse matrix computations.
In IEEE Trans. On Parallel And Distributed Systems, volume 7,
February 1996.

[BWOD11] Aydın Buluç, Samuel Williams, Leonid Oliker, and James Dem-
mel. Reduced-bandwidth multithreaded algorithms for sparse
matrix-vector multiplication. In Proc. IPDPS, 2011.

[Che89] Hui Cheng. Vector pipelining, chaining, and speed on the IBM
3090 and Cray X-MP. IEEE Computer, 22(9):31–46, 1989.

http://gauss.cs.ucsb.edu/~aydin/Buluc_Dissertation.pdf
http://gauss.cs.ucsb.edu/~aydin/Buluc_Dissertation.pdf
http://graal.ens-lyon.fr/~abuttari/mypapers/thesis.pdf
http://graal.ens-lyon.fr/~abuttari/mypapers/thesis.pdf

[CHL+96] Sandra Carney, Michael A. Heroux, Guangye Li, Roldan Pozo,
Karin A. Remington, and Kesheng Wu. A revised proposal for a
Sparse BLAS toolkit. Technical report, 1996. (SPARKER working
note #3).

[CLPT02] S. Chatterjee, A.R. Lebeck, P.K. Patnala, and M. Thottethodi.
Recursive array layouts and fast matrix multiplication. Parallel
and Distributed Systems, IEEE Transactions on, 12(11), Novem-
ber 2002.

[CLRS09] Thomas H. Cormen, Charles E. Leiserson, Ronald L. Rivest, and
Clifford Stein. Introduction to algorithms. MIT Press, 3rd ed.
edition, 2009.

[Com11] Committee on Sustaining Growth in Computing Performance. The
Future of Computing Performance: Game Over or Next Level?
National Academy Press, 2011.

[Dav07] Tim Davis. Jim Wilkinson’s definition of a sparse matrix. Jan-
uary 2007. As of June 2011, appearing on the Numerical Al-
gorithms mailing list (Digest, Volume 7, Number 6), on http:

//www.netlib.org/na-digest-html/07/v07n06.html#2.

[Dav10] Tim Davis. University of Florida Sparse Matrix Collection. ACM
Transactions on Mathematical Software, to appear, 2010. (submit-
ted to ACM TOMS; as of June 2011, on http://www.cise.ufl.

edu/~davis/techreports/matrices.pdf).

[DdSF10] P. D’Ambra, D. di Serafino, and S. Filippone. MLD2P4: a pack-
age of parallel algebraic multilevel domain decomposition precon-
ditioners in Fortran 95. ACM Transactions on Mathematical Soft-
ware, 37(3), 2010.

[DDSvdV98] J.J. Dongarra, Iain S. Duff, Danny C. Sorensen, and Henk van der
Vorst. Numerical linear algebra for high-performance computers.
Society for Industrial Mathematics, 1998.

[DEG+99] James W. Demmel, Stanley C. Eisenstat, John R. Gilbert, Xi-
aoye S. Li, and Joseph W. H. Liu. A supernodal approach to
sparse partial pivoting. SIAM J. Matrix Analysis and Applica-
tions, 20(3):720–755, 1999.

193

http://www.netlib.org/na-digest-html/07/v07n06.html#2
http://www.netlib.org/na-digest-html/07/v07n06.html#2
http://www.cise.ufl.edu/~davis/techreports/matrices.pdf
http://www.cise.ufl.edu/~davis/techreports/matrices.pdf

[DEL01] Jack Dongarra, Victor Eijkhout, and Piotr Luszczek. Recursive
approach in sparse matrix lu factorization. Scientific Program-
ming, 9(1):51–60, 2001.

[DGLN04] T. A. Davis, J. R. Gilbert, S. Larimore, and E. Ng. Algorithm 836:
COLAMD, a column approximate minimum degree ordering algo-
rithm. ACM Transactions on Mathematical Software, 30(3):377–
380, September 2004.

[DHP02] Iain S. Duff, Michael A. Heroux, and Roldan Pozo. An overview
of the sparse basic linear algebra subprograms: The new stan-
dard from the BLAS Technical Forum. ACM Trans. Math. Softw.,
28(2):239–267, 2002.

[DMP90] J.-L. Dekeyser, Ph. Marquet, and Ph. Preux. Vector addressing
processor for direct and indirect accesses. Microprocessing and
Microprogramming, 30:657 – 664, 1990.

[Dre07] Ulrich Drepper. What every programmer should know about
memory. 2007. Available as of June 2011 on http://lwn.net/

Articles/250967/.

[FALM] R. Fischer, M. Ast, J. Labarta, and H. Manz. A dynamic task
graph parallelization approach. In Proceedings of IASS-IACM-
2000: Fourth International Colloquium on Computation of Shell
and Spatial Structures, June 4-7, 2000 in Chania-Crete, Greece.

[FB74] Raphael Finkel and J.L. Bentley. Quad trees: A data structure for
retrieval on composite keys. Acta Informatica, 4(1):1–9, March
1974.

[FC00] Salvatore Filippone and Michele Colajanni. PSBLAS: A library
for parallel linear algebra computation on sparse matrices. ACM
Transactions on Mathematical Software, 26(4):527–550, December
2000.

[FLPR] Matteo Frigo, Charles E. Leiserson, Harald Prokop, and Sridhar
Ramachandran. Cache-oblivious algorithms. In In the 40th An-
nual Symposium on Foundations of Computer Science, FOCS ’99,
17-18 October, 1999, New York, NY, USA.

http://lwn.net/Articles/250967/
http://lwn.net/Articles/250967/

[FSF10] FSF. The free software definition, v.1.92 (web page), March 2010.
As of June 2011, on http://www.gnu.org/philosophy/free-sw.

html.

[GL96] Gene H. Golub and Charles F. Van Loan. Matrix computations
(3rd ed.). Johns Hopkins University Press, Baltimore, MD, USA,
1996.

[GL09] Peter Gottschling and Dag Lindbo. Generic compressed sparse
matrix insertion: algorithms and implementations in MTL4 and
FEniCS. In POOSC ’09: Proceedings of the 8th workshop on
Parallel/High-Performance Object-Oriented Scientific Computing,
pages 1–8. ACM, 2009.

[G.M66] G.M.Morton. A computer oriented geodetic data base and a new
technique in file sequencing. Tech. Rep., Mar. 1966.

[GP07] Joe Gebis and David A. Patterson. Embracing and extend-
ing 20th-century instruction set architectures. IEEE Computer,
40(4):68–75, 2007.

[GRW07] Fred G. Gustavson, John K. Reid, and Jerzy Waśniewski. Algo-
rithm 865: Fortran 95 subroutines for Cholesky factorization in
block hybrid format. ACM Trans. Math. Softw., 33(1):8, 2007.

[Gus97] F. G. Gustavson. Recursion leads to automatic variable blocking
for dense linear-algebra algorithms. IBM J. Res. Dev., 41(6):737–
756, 1997.

[GW04] Steven T. Gabriel and David S. Wise. The Opie compiler from
row-major source to Morton-ordered matrices. In WMPI ’04: Pro-
ceedings of the 3rd workshop on Memory performance issues, pages
136–144, New York, NY, USA, 2004. ACM.

[GWJ08] Peter Gottschling, David S. Wise, and Adwait Joshib. Generic
support of algorithmic and structural recursion for scientific com-
puting. The International Journal of Parallel, Emergent and Dis-
tributed Systems, (0), August 2008.

[Hac99] Wolfgang Hackbusch. A sparse matrix arithmetic based on H-
matrices. Part I: Introduction to H-matrices. Computing, (62):89–
108, 1999.

195

http://www.gnu.org/philosophy/free-sw.html
http://www.gnu.org/philosophy/free-sw.html

[HN08] José R. Herrero and Juan J. Navarro. Hypermatrix oriented su-
pernode amalgamation. The Journal of Supercomputing, 46(1):84–
104, October 2008.

[Im00] Eun-Jin Im. Optimizing the Performance of Sparse Matrix-Vector
Multiplication. PhD thesis, University of California Berkeley, Jun
2000. As of June 2011, available on http://www.eecs.berkeley.

edu/Pubs/TechRpts/2000/5556.html; supervised by Katherine
A. Yelick.

[Int08a] Intel Corporation. Intel R© 64 and IA-32 Architectures Optimiza-
tion Reference Manual. December 2008.

[Int08b] Intel Corporation. Intel R© 64 and IA-32 Architectures Software
Developer’s Manual Volume 1: Basic Architecture. November
2008.

[Int09] Intel Corporation. Intel R© Cilk++ SDK Programmer’s Guide. Oc-
tober 2009.

[Int10] Intel Corporation. Intel R© Threading Building Blocks, Reference
Guide, v.1.20. May 2010.

[IST04] Dror Irony, Gil Shklarski, and Sivan Toledo. Parallel and fully
recursive multifrontal sparse Cholesky. Future Generation Com-
puter Systems, 20(3):425 – 440, 2004.

[IY99] Eun-Jin Im and Katherine Yelick. Optimizing sparse matrix vector
multiplication on SMPs. In In Proc. of the 9th SIAM Conf. on
Parallel Processing for Sci. Comp, 1999.

[IYV04a] E. J. Im, K. Yelick, and R. Vuduc. SPARSITY: Optimization
framework for sparse matrix kernels. International Journal of High
Performance Computing Applications, 18(1):135, 2004.

[IYV04b] Eun-Jin Im, Katherine A. Yelick, and Richard Vuduc. SPAR-
SITY: Framework for optimizing sparse matrix-vector multiply.
International Journal of High Performance Computing Applica-
tions, 18(1):135–158, February 2004.

[JMC05] Guohua Jin and John Mellor-Crummey. Using space-filling curves
for computation reordering. Proceedings of the Los Alamos Com-
puter Science Institute Sixth Annual Symposium, October 2005.

http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/5556.html
http://www.eecs.berkeley.edu/Pubs/TechRpts/2000/5556.html

[KGK08] Kornilios Kourtis, Georgios Goumas, and Nectarios Koziris. Im-
proving the performance of multithreaded sparse matrix-vector
multiplication using index and value compression. Computing
Frontiers, pages 87–96, 2008.

[Knu97] Donald E. Knuth. The art of computer programming, volume 1
(3rd ed.): fundamental algorithms. Addison Wesley Longman Pub-
lishing Co., Inc., Redwood City, CA, USA, 1997.

[LK00] J. K. Lawder and P. J. H. King. Using space-filling curves for
multi-dimensional indexing. In Lecture Notes in Computer Sci-
ence, pages 20–35, 2000.

[LW07] K. Patrick Lorton and David S. Wise. Analyzing block locality in
Morton-order and Morton-hybrid matrices. SIGARCH Computer
Architecture News, (35), 2007.

[May09] Jan Mayer. Parallel algorithms for solving linear systems with
sparse triangular matrices. Computing, 86(4):291–312, 2009.

[MC69] A. C. McKellar and E. G. Coffman, Jr. Organizing matrices and
matrix operations for paged memory systems. Commun. ACM,
12(3):153–165, 1969.

[MDF] Richard Tran Mills, Eduardo F. Dazevedo, and Mark R. Fahey.
Progress towards optimizing the PETSc numerical toolkit on the
Cray X1. In Proceedings of the Cray User Group 2005 Technical
Meeting, Albuquerque, NM, May 16-19, 2005.

[MFG+10] Michele Martone, Salvatore Filippone, Pawe l Gepner, Marcin Pa-
przycki, and Salvatore Tucci. Use of hybrid recursive CSR/COO
data structures in sparse matrices-vector multiplication. In Pro-
ceedings of the International Multiconference on Computer Sci-
ence and Information Technology, Wis la, Poland, October 2010.

[MFPT10a] Michele Martone, Salvatore Filippone, Marcin Paprzycki, and Sal-
vatore Tucci. About the assembly of recursive sparse matrices. In
Proceedings of the International Multiconference on Computer Sci-
ence and Information Technology, Wis la. Poland, October 2010.

[MFPT10b] Michele Martone, Salvatore Filippone, Marcin Paprzycki, and
Salvatore Tucci. On BLAS operations with recursively stored

197

sparse matrices. In Proceedings of the International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, September 2010.

[MFPT10c] Michele Martone, Salvatore Filippone, Marcin Paprzycki, and Sal-
vatore Tucci. On the usage of 16 bit indices in recursively stored
sparse matrices. In Proceedings of the International Symposium
on Symbolic and Numeric Algorithms for Scientific Computing,
Timisoara, Romania, September 2010.

[MFT+10] Michele Martone, Salvatore Filippone, Salvatore Tucci, Marcin
Paprzycki, and Maria Ganzha. Utilizing recursive storage in
sparse matrix-vector multiplication - preliminary considerations.
In Thomas Philips, editor, CATA, pages 300–305. ISCA, 2010.

[PA97] Ali Pinar and Cevdet Aykanat. Sparse matrix decomposition with
optimal load balancing. In High-Performance Computing, 1997.
Proceedings. Fourth International Conference on, pages 224 – 229,
1997.

[PH04] David A. Patterson and John L. Hennessy. Computer Architecture:
A Quantitative Approach. Morgan Kaufmann, 4th edition, 2004.

[PHP03] N. Park, B. Hong, and V.K. Prasanna. Tiling, block data lay-
out, and memory hierarchy performance. Parallel and Distributed
Systems, IEEE Transactions on, 14(7), July 2003.

[Pis] Sergio Pissanetzky. Sparse matrix technology (electronic edition).
self-published. As of June 2011, available by contacting the author
through http://www.scicontrols.com.

[pos08] Standard for information technology— portable operating system
interface (POSIX) (IEEE std 1003.1), 2008.

[PPP04] J.S. Park, M. Penner, and V.K. Prasanna. Optimizing graph algo-
rithms for improved cache performance. Parallel and Distributed
Systems, IEEE Transactions on, 15(9), 2004.

[Pro99] Harald Prokop. Cache-oblivious algorithms. Master’s thesis,
Department of Electrical Engineering and Computer Science at
the Massachussets Institute of Technology, June 1999. Thesis
supervisor: Charles E. Leiserson. As of May 2011, available at
http://supertech.csail.mit.edu/papers/Prokop99.pdf.

http://www.scicontrols.com
http://supertech.csail.mit.edu/papers/Prokop99.pdf

[PSK11] M. Papadrakakis, G. Stavroulakis, and A. Karatarakis. A new era
in scientific computing: Domain decomposition methods in hybrid
cpu-gpu architectures. Computer Methods in Applied Mechanics
and Engineering, 200:1490 – 1508, 2011.

[PV05] Ali Pinar and Virginia Vassilevska. Finding nonoverlapping sub-
structures of a sparse matrix. Electronic Transaction on Numerical
Analysis, 21:107–124, 2005.

[RG] Raghu Ramakrishnan and Johannes Gehrke. Database manage-
ment systems. McGraw-Hill, 2nd ed. edition.

[RW08] Rajeev Raman and David S. Wise. Converting to and from dilated
integers. IEEE Trans. on Computers, pages 567–573, 2008.

[Saa94] Yousef Saad. SPARSKIT: a basic tool kit for sparse matrix com-
putations, version 2. Technical report, Computer Science Depart-
ment, University of Minnesota, Minneapolis, June 1994.

[Saa03] Y. Saad. Iterative Methods for Sparse Linear Systems, 2nd edition.
SIAM, Philadelphia, PA, 2003.

[Sag96] Hans Sagan. Space Filling Curves. Springer-Verlag, 1996.

[Sam84] H. Samet. The quadtree and related hierarchical data structures.
Technical Report 16, June 1984.

[Sam06] Hanan Samet. Foundations of Multidimensional and Metric Data
Structures. Morgan Kaufmann, August 2006.

[TB97] L.N. Trefethen and D. Bau. Numerical linear algebra. Society for
Industrial Mathematics, 1997.

[TBK03] Jeyarajan Thiyagalingam, Olav Beckmann, and Paul H. J. Kelly.
An exhaustive evaluation of row-major, column-major and Morton
layouts for large two-dimensional arrays. pages 340–351, 2003.

[TKB06] Sunil Tiyyagura, Uwe Küster, and Stefan Borowski. Performance
improvement of sparse matrix vector product on vector machines.
3991:196–203, 2006.

[VB05] Brendan Vastenhouw and Rob H. Bisseling. A two-dimensional
data distribution method for parallel sparse matrix-vector multi-
plication. SIAM Review, (47):47–95, 2005.

199

[VDY05a] R. Vuduc, J. W. Demmel, and K. A. Yelick. OSKI: A library of
automatically tuned sparse matrix kernels. In Journal of Physics:
Conference Series, volume 16, pages 521–530. Institute of Physics
Publishing, 2005.

[VDY05b] Richard Vuduc, James Demmel, and Katherine Yelick. An inter-
face for a self-adapting sparse kernel library. Technical report,
Berkeley, CA, USA, September 2005.

[vFRS72] G. von Fuchs, J. R. Roy, and E. Schrem. Hypermatrix solution
of large sets of symmetric positive-definite linear equations. Com-
puter Methods in Applied Mechanics and Engineering, 1(2):197 –
216, 1972.

[VKH+02] R. Vuduc, S. Kamil, J. Hsu, R. Nishtala, J. W. Demmel, and K. A.
Yelick. Automatic performance tuning and analysis of sparse tri-
angular solve. In ICS 2002: Workshop on Performance Optimiza-
tion Via High-Level Languages and Libraries, 2002.

[VP04] Virginia Vassilevska and Ali Pinar. Finding nonoverlapping dense
blocks of a sparse matrix. Technical report, University of Califor-
nia, Feb 2004.

[Vud03] Richard Wilson Vuduc. Automatic performance tuning of sparse
matrix kernels (phd thesis). PhD thesis, University Of California,
Berkeley, 2003. Available as of June 2011 on http://bebop.cs.

berkeley.edu/pubs/vuduc2003-dissertation.pdf; supervised
by Jim Demmel.

[WPD01] R. C. Whaley, A. Petitet, and J. J. Dongarra. Automated em-
pirical optimization of software and the ATLAS project. Parallel
Computing, 27:3–35, 2001.

[YB09] A. N. Yzelman and Rob H. Bisseling. Cache-oblivious sparse
matrix–vector multiplication by using sparse matrix partitioning
methods. SIAM Journal on Scientific Computing, 31(4):3128–
3154, 2009.

[YB10] A. N. Yzelman and Rob H. Bisseling. A cache-oblivious sparse
matrix–vector multiplication scheme based on the Hilbert curve.
(Unpublished manuscript, available on http://www.math.uu.

http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
http://bebop.cs.berkeley.edu/pubs/vuduc2003-dissertation.pdf
http://www.math.uu.nl/people/yzelman/publications/yzelman10a_pre.pdf
http://www.math.uu.nl/people/yzelman/publications/yzelman10a_pre.pdf

nl/people/yzelman/publications/yzelman10a_pre.pdf as of
June 2011), 2010.

201

http://www.math.uu.nl/people/yzelman/publications/yzelman10a_pre.pdf
http://www.math.uu.nl/people/yzelman/publications/yzelman10a_pre.pdf

	Contents
	List of Figures
	List of Tables
	Acknowledgements
	Introduction
	Contributions
	Thesis Outline
	Representation of Sparse Matrices
	Coordinate Representations
	SpMV for COO/COR/COC
	SpMV for COO/COR/COC, Symmetric
	SpSV for COR

	Compressed Sparse Stripes
	SpMV for CSR/CSC
	SpMV for CSR/CSC, Symmetric, and Variants
	SpSV for CSR/CSC
	Two Variations: Zig-Zag CSR and BCSR

	Overview of Other Operations
	Memory Access Patterns for Basic Sparse Matrix Operations
	More Literature and Related Topics
	Overview of Other Formats
	Considerations and Literature Pointers

	Hierarchical Representations of Sparse Matrices
	CB: Cache Blocking
	CSB: Compressed Sparse Blocks
	RCSR: A Recursive Layout
	SpMV for a Recursive Subdivision Layout
	SpSV for a Recursive Subdivision Layout
	Sorting for Recursive Partitioning
	Recursive Subdivision
	Random Access Operations

	First Experiments with RCSR
	Conclusions from the First RCSR/RCSC Experiment

	More Literature and Related Topics

	Shared Memory Parallel Algorithms for Recursively Quad-Partitioned Blocks
	Parallel SpMV
	Parallel SpSV
	Experimental Results for SpMV and SpSV
	Conclusions

	Tuning RCSR: Recursive Sparse Blocks
	Reducing Index Usage in RCSR with Short Indices
	Recursion Stop Criteria, Revisited
	Support for 16 bit Indices

	Experimental Evaluation of RCSR with Compressed Indices
	Unsymmetric Matrices
	Symmetric Matrices
	Experimental Comparison with CSB
	Conclusions From the Introduction of Short Indices

	Heterogeneous (COO/CSR) Leaves:RSB
	Recursive CSR and Index Overhead
	Recursive Storage Format with CSR and COO Leaves

	Experimental Evaluation of RSB
	Unsymmetric Matrices
	Symmetric Matrices
	Comparative Analysis
	Conclusions From the Introduction of COO Leaves

	Closing Remarks

	Building RSB Matrices
	Literature Overview
	Some Properties of the Quad Trees Used in RSB Matrices
	Overview of COO to RSB Conversion
	Assembling RSB from Sorted COO
	Experimental Results

	Conclusions from the Serial-Parallel RSB Constructor Experiments
	Enhancing Build Parallelism

	Conclusions and Future Work
	Conclusions
	Minor Enhancements to RSB
	Major Enhancements to RSB

	Appendix: experimental setup
	Setup for §2.4 Experiments
	Setup for §3 Experiments
	Setup for §4.1 Experiments
	Setup for §4.3 Experiments
	Setup for §5 Experiments
	Setup for §B Experiments

	Appendix: patterns of indirect memory access, with stride
	Appendix: some more experiments with RSB
	Description of Experiments
	Results for SpMV and SpMV-T, versus MKL
	Single Threaded, RSB versus MKL
	Big Matrices, versus MKL
	Concluding remarks

	Appendix: notation and conventions
	Bibliography

